BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30639696)

  • 41. Direct Prediction of the Toxic Gas Diffusion Rule in a Real Environment Based on LSTM.
    Qian F; Chen L; Li J; Ding C; Chen X; Wang J
    Int J Environ Res Public Health; 2019 Jun; 16(12):. PubMed ID: 31212880
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of machine learning and deep learning techniques in promoter prediction across diverse species.
    Bhandari N; Khare S; Walambe R; Kotecha K
    PeerJ Comput Sci; 2021; 7():e365. PubMed ID: 33817015
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DeepNitro: Prediction of Protein Nitration and Nitrosylation Sites by Deep Learning.
    Xie Y; Luo X; Li Y; Chen L; Ma W; Huang J; Cui J; Zhao Y; Xue Y; Zuo Z; Ren J
    Genomics Proteomics Bioinformatics; 2018 Aug; 16(4):294-306. PubMed ID: 30268931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Early Prediction of Sepsis in EMR Records Using Traditional ML Techniques and Deep Learning LSTM Networks.
    Saqib M; Sha Y; Wang MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4038-4041. PubMed ID: 30441243
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accurate prediction of species-specific 2-hydroxyisobutyrylation sites based on machine learning frameworks.
    Wang YG; Huang SY; Wang LN; Zhou ZY; Qiu JD
    Anal Biochem; 2020 Aug; 602():113793. PubMed ID: 32473122
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of Malonylation, Succinylation, and Glutarylation in Serum Proteins of Acute Myocardial Infarction Patients.
    Zhou B; Du Y; Xue Y; Miao G; Wei T; Zhang P
    Proteomics Clin Appl; 2020 Jan; 14(1):e1900103. PubMed ID: 31532912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Systematic Characterization of Lysine Post-translational Modification Sites Using MUscADEL.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Webb GI; Xu D; Akutsu T; Song J
    Methods Mol Biol; 2022; 2499():205-219. PubMed ID: 35696083
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Malonyl-proteome profiles of Staphylococcus aureus reveal lysine malonylation modification in enzymes involved in energy metabolism.
    Shi Y; Zhu J; Xu Y; Tang X; Yang Z; Huang A
    Proteome Sci; 2021 Jan; 19(1):1. PubMed ID: 33436009
    [TBL] [Abstract][Full Text] [Related]  

  • 49. EL_LSTM: Prediction of DNA-Binding Residue from Protein Sequence by Combining Long Short-Term Memory and Ensemble Learning.
    Zhou J; Lu Q; Xu R; Gui L; Wang H
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):124-135. PubMed ID: 30040656
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A systematic identification of species-specific protein succinylation sites using joint element features information.
    Hasan MM; Khatun MS; Mollah MNH; Yong C; Guo D
    Int J Nanomedicine; 2017; 12():6303-6315. PubMed ID: 28894368
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved Prediction Model of Protein Lysine Crotonylation Sites Using Bidirectional Recurrent Neural Networks.
    Tng SS; Le NQK; Yeh HY; Chua MCH
    J Proteome Res; 2022 Jan; 21(1):265-273. PubMed ID: 34812044
    [TBL] [Abstract][Full Text] [Related]  

  • 52. iSUMO-RsFPN: A predictor for identifying lysine SUMOylation sites based on multi-features and feature pyramid networks.
    Lv Z; Wei X; Hu S; Lin G; Qiu W
    Anal Biochem; 2024 Apr; 687():115460. PubMed ID: 38191118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of Protein Lysine Acylation by Integrating Primary Sequence Information with Multiple Functional Features.
    Du Y; Zhai Z; Li Y; Lu M; Cai T; Zhou B; Huang L; Wei T; Li T
    J Proteome Res; 2016 Dec; 15(12):4234-4244. PubMed ID: 27774790
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein Function Prediction: From Traditional Classifier to Deep Learning.
    Lv Z; Ao C; Zou Q
    Proteomics; 2019 Jul; 19(14):e1900119. PubMed ID: 31187588
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion.
    Nath A; Subbiah K
    Comput Biol Chem; 2015 Dec; 59 Pt A():101-10. PubMed ID: 26433483
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lysine malonylation is elevated in type 2 diabetic mouse models and enriched in metabolic associated proteins.
    Du Y; Cai T; Li T; Xue P; Zhou B; He X; Wei P; Liu P; Yang F; Wei T
    Mol Cell Proteomics; 2015 Jan; 14(1):227-36. PubMed ID: 25418362
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparative study on predicting influenza outbreaks.
    Zhang J; Nawata K
    Biosci Trends; 2017 Nov; 11(5):533-541. PubMed ID: 29070762
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties.
    Hasan MM; Yang S; Zhou Y; Mollah MN
    Mol Biosyst; 2016 Mar; 12(3):786-95. PubMed ID: 26739209
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting Citrullination Sites in Protein Sequences Using mRMR Method and Random Forest Algorithm.
    Zhang Q; Sun X; Feng K; Wang S; Zhang YH; Wang S; Lu L; Cai YD
    Comb Chem High Throughput Screen; 2017; 20(2):164-173. PubMed ID: 28029071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.