BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30639696)

  • 61. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 62. iPTM-mLys: identifying multiple lysine PTM sites and their different types.
    Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC
    Bioinformatics; 2016 Oct; 32(20):3116-3123. PubMed ID: 27334473
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences.
    Li H; Gong XJ; Yu H; Zhou C
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30071670
    [TBL] [Abstract][Full Text] [Related]  

  • 65. CarSite-II: an integrated classification algorithm for identifying carbonylated sites based on K-means similarity-based undersampling and synthetic minority oversampling techniques.
    Zuo Y; Lin J; Zeng X; Zou Q; Liu X
    BMC Bioinformatics; 2021 Apr; 22(1):216. PubMed ID: 33902446
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Deep learning with long short-term memory networks for classification of dementia related travel patterns.
    Vuong NK; Liu Y; Chan S; Lau CT; Chen Z; Wu M; Li X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5563-5566. PubMed ID: 33019238
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting.
    Wang J; Sun X; Cheng Q; Cui Q
    Sci Total Environ; 2021 Mar; 762():143099. PubMed ID: 33127140
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Predicting Post-Translational Modifications from Local Sequence Fragments Using Machine Learning Algorithms: Overview and Best Practices.
    Tatjewski M; Kierczak M; Plewczynski D
    Methods Mol Biol; 2017; 1484():275-300. PubMed ID: 27787833
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Lysine Malonylation and Its Links to Metabolism and Diseases.
    Zou L; Yang Y; Wang Z; Fu X; He X; Song J; Li T; Ma H; Yu T
    Aging Dis; 2023 Feb; 14(1):84-98. PubMed ID: 36818560
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Predicting hospital readmission for lupus patients: An RNN-LSTM-based deep-learning methodology.
    Reddy BK; Delen D
    Comput Biol Med; 2018 Oct; 101():199-209. PubMed ID: 30195164
    [TBL] [Abstract][Full Text] [Related]  

  • 71. UbiComb: A Hybrid Deep Learning Model for Predicting Plant-Specific Protein Ubiquitylation Sites.
    Siraj A; Lim DY; Tayara H; Chong KT
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34064731
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Lysine Malonylome May Affect the Central Metabolism and Erythromycin Biosynthesis Pathway in Saccharopolyspora erythraea.
    Xu JY; Xu Z; Zhou Y; Ye BC
    J Proteome Res; 2016 May; 15(5):1685-701. PubMed ID: 27090497
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set.
    Wuyun Q; Zheng W; Zhang Y; Ruan J; Hu G
    PLoS One; 2016; 11(5):e0155370. PubMed ID: 27183223
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.
    Hanson J; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Mar; 33(5):685-692. PubMed ID: 28011771
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Success: evolutionary and structural properties of amino acids prove effective for succinylation site prediction.
    López Y; Sharma A; Dehzangi A; Lal SP; Taherzadeh G; Sattar A; Tsunoda T
    BMC Genomics; 2018 Jan; 19(Suppl 1):923. PubMed ID: 29363424
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features.
    Weng SL; Huang KY; Kaunang FJ; Huang CH; Kao HJ; Chang TH; Wang HY; Lu JJ; Lee TY
    BMC Bioinformatics; 2017 Mar; 18(Suppl 3):66. PubMed ID: 28361707
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Deep_KsuccSite: A novel deep learning method for the identification of lysine succinylation sites.
    Liu X; Xu LL; Lu YP; Yang T; Gu XY; Wang L; Liu Y
    Front Genet; 2022; 13():1007618. PubMed ID: 36246655
    [TBL] [Abstract][Full Text] [Related]  

  • 79. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Advanced machine learning application for odor and corrosion control at a water resource recovery facility.
    Yang F; Pluth TB; Fang X; Francq KB; Jurjovec M; Tang Y
    Water Environ Res; 2021 Nov; 93(11):2346-2359. PubMed ID: 34328667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.