These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30639729)

  • 1. Comparison of biological weighting functions used to model endogenous sunlight inactivation rates of MS2 coliphage.
    Silverman AI; Tay N; Machairas N
    Water Res; 2019 Mar; 151():439-446. PubMed ID: 30639729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sunlight inactivation of MS2 coliphage in the absence of photosensitizers: modeling the endogenous inactivation rate using a photoaction spectrum.
    Nguyen MT; Silverman AI; Nelson KL
    Environ Sci Technol; 2014 Apr; 48(7):3891-8. PubMed ID: 24575954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modeling approach to estimate the solar disinfection of viral indicator organisms in waste stabilization ponds and surface waters.
    Kohn T; Mattle MJ; Minella M; Vione D
    Water Res; 2016 Jan; 88():912-922. PubMed ID: 26615386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human virus and bacteriophage inactivation in clear water by simulated sunlight compared to bacteriophage inactivation at a southern California beach.
    Love DC; Silverman A; Nelson KL
    Environ Sci Technol; 2010 Sep; 44(18):6965-70. PubMed ID: 20726507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological Weighting Functions for Evaluating the Role of Sunlight-Induced Inactivation of Coliphages at Selected Beaches and Nearby Tributaries.
    Zepp RG; Cyterski M; Wong K; Georgacopoulos O; Acrey B; Whelan G; Parmar R; Molina M
    Environ Sci Technol; 2018 Nov; 52(22):13068-13076. PubMed ID: 30395707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conceptual model and experimental framework to determine the contributions of direct and indirect photoreactions to the solar disinfection of MS2, phiX174, and adenovirus.
    Mattle MJ; Vione D; Kohn T
    Environ Sci Technol; 2015 Jan; 49(1):334-42. PubMed ID: 25419957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulated sunlight action spectra for inactivation of MS2 and PRD1 bacteriophages in clear water.
    Fisher MB; Love DC; Schuech R; Nelson KL
    Environ Sci Technol; 2011 Nov; 45(21):9249-55. PubMed ID: 21936490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic modeling of the synergistic thermal and spectral actions on the inactivation of viruses in water by sunlight.
    García-Gil Á; Martínez A; Polo-López MI; Marugán J
    Water Res; 2020 Sep; 183():116074. PubMed ID: 32721707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar water disinfection (SODIS) of Escherichia coli, Enterococcus spp., and MS2 coliphage: effects of additives and alternative container materials.
    Fisher MB; Iriarte M; Nelson KL
    Water Res; 2012 Apr; 46(6):1745-54. PubMed ID: 22257930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters.
    Kohn T; Nelson KL
    Environ Sci Technol; 2007 Jan; 41(1):192-7. PubMed ID: 17265947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sunlight inactivation of human viruses and bacteriophages in coastal waters containing natural photosensitizers.
    Silverman AI; Peterson BM; Boehm AB; McNeill K; Nelson KL
    Environ Sci Technol; 2013 Feb; 47(4):1870-8. PubMed ID: 23384052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sunlight inactivation of viruses in open-water unit process treatment wetlands: modeling endogenous and exogenous inactivation rates.
    Silverman AI; Nguyen MT; Schilling IE; Wenk J; Nelson KL
    Environ Sci Technol; 2015 Mar; 49(5):2757-66. PubMed ID: 25664567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the Endogenous Sunlight Inactivation Rates of Laboratory Strain and Wastewater E. coli and Enterococci Using Biological Weighting Functions.
    Silverman AI; Nelson KL
    Environ Sci Technol; 2016 Nov; 50(22):12292-12301. PubMed ID: 27934240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virus Sensitivity Index of UV disinfection.
    Tang WZ; Sillanpää M
    Environ Technol; 2015; 36(9-12):1464-75. PubMed ID: 25495554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of MS2 on oxide nanoparticles affects chlorine disinfection and solar inactivation.
    Zhang W; Zhang X
    Water Res; 2015 Feb; 69():59-67. PubMed ID: 25437338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoinactivation of virus on iron-oxide coated sand: enhancing inactivation in sunlit waters.
    Pecson BM; Decrey L; Kohn T
    Water Res; 2012 Apr; 46(6):1763-70. PubMed ID: 22264797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Sensitivity Analysis of Environmental, Water Quality, Photoreactivity, and Engineering Design Parameters in Sunlight Inactivation of Viruses.
    Zhang X; Lardizabal A; Silverman AI; Vione D; Kohn T; Nguyen TH; Guest JS
    Environ Sci Technol; 2020 Jul; 54(13):8401-8410. PubMed ID: 32469206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark.
    Nieto-Juarez JI; Kohn T
    Photochem Photobiol Sci; 2013 Sep; 12(9):1596-605. PubMed ID: 23698031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MS2 coliphage and E. coli UVB inactivation rates in optically clear water: dose, dose rate and temperature dependence.
    Lian Y; Mai L; Cromar N; Buchanan N; Fallowfield H; Li X
    Water Sci Technol; 2018 Dec; 78(10):2228-2238. PubMed ID: 30629550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sunlight Inactivation of Human Norovirus and Bacteriophage MS2 Using a Genome-Wide PCR-Based Approach and Enzyme Pretreatment.
    Loeb SK; Jennings WC; Wigginton KR; Boehm AB
    Environ Sci Technol; 2021 Jul; 55(13):8783-8792. PubMed ID: 34101449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.