These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 30639837)

  • 1. A hierarchical independent component analysis model for longitudinal neuroimaging studies.
    Wang Y; Guo Y
    Neuroimage; 2019 Apr; 189():380-400. PubMed ID: 30639837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HINT: A hierarchical independent component analysis toolbox for investigating brain functional networks using neuroimaging data.
    Lukemire J; Wang Y; Verma A; Guo Y
    J Neurosci Methods; 2020 Jul; 341():108726. PubMed ID: 32360892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition.
    Hu G; Zhang Q; Waters AB; Li H; Zhang C; Wu J; Cong F; Nickerson LD
    J Neurosci Methods; 2019 Sep; 325():108359. PubMed ID: 31306718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INVESTIGATING DIFFERENCES IN BRAIN FUNCTIONAL NETWORKS USING HIERARCHICAL COVARIATE-ADJUSTED INDEPENDENT COMPONENT ANALYSIS.
    Shi R; Guo Y
    Ann Appl Stat; 2016 Dec; 10(4):1930-1957. PubMed ID: 28367256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies.
    Guo Y; Tang L
    Biometrics; 2013 Dec; 69(4):970-81. PubMed ID: 24033125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of diversity in data-driven analysis of multi-subject fMRI data: Comparison of approaches based on independence and sparsity using global performance metrics.
    Long Q; Bhinge S; Levin-Schwartz Y; Boukouvalas Z; Calhoun VD; Adalı T
    Hum Brain Mapp; 2019 Feb; 40(2):489-504. PubMed ID: 30240499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting individual brain functional connectivity using a Bayesian hierarchical model.
    Dai T; Guo Y;
    Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data.
    Liu C; JaJa J; Pessoa L
    Neuroimage; 2018 Apr; 169():363-373. PubMed ID: 29246846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel group ICA+ICA: Joint estimation of linked functional network variability and structural covariation with application to schizophrenia.
    Qi S; Sui J; Chen J; Liu J; Jiang R; Silva R; Iraji A; Damaraju E; Salman M; Lin D; Fu Z; Zhi D; Turner JA; Bustillo J; Ford JM; Mathalon DH; Voyvodic J; McEwen S; Preda A; Belger A; Potkin SG; Mueller BA; Adali T; Calhoun VD
    Hum Brain Mapp; 2019 Sep; 40(13):3795-3809. PubMed ID: 31099151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-way parallel group independent component analysis: Fusion of spatial and spatiotemporal magnetic resonance imaging data.
    Qi S; Silva RF; Zhang D; Plis SM; Miller R; Vergara VM; Jiang R; Zhi D; Sui J; Calhoun VD
    Hum Brain Mapp; 2022 Mar; 43(4):1280-1294. PubMed ID: 34811846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general probabilistic model for group independent component analysis and its estimation methods.
    Guo Y
    Biometrics; 2011 Dec; 67(4):1532-42. PubMed ID: 21517789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse Bayesian modeling of hierarchical independent component analysis: Reliable estimation of individual differences in brain networks.
    Lukemire J; Pagnoni G; Guo Y
    Biometrics; 2023 Dec; 79(4):3599-3611. PubMed ID: 37036246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SMART (Splitting-Merging Assisted Reliable) Independent Component Analysis for Extracting Accurate Brain Functional Networks.
    He X; Calhoun VD; Du Y
    Neurosci Bull; 2024 Jul; 40(7):905-920. PubMed ID: 38491231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A semi-blind online dictionary learning approach for fMRI data.
    Long Z; Liu L; Gao Z; Chen M; Yao L
    J Neurosci Methods; 2019 Jul; 323():1-12. PubMed ID: 31085215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unified framework for group independent component analysis for multi-subject fMRI data.
    Guo Y; Pagnoni G
    Neuroimage; 2008 Sep; 42(3):1078-93. PubMed ID: 18650105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Group ICA for identifying biomarkers in schizophrenia: 'Adaptive' networks via spatially constrained ICA show more sensitivity to group differences than spatio-temporal regression.
    Salman MS; Du Y; Lin D; Fu Z; Fedorov A; Damaraju E; Sui J; Chen J; Mayer AR; Posse S; Mathalon DH; Ford JM; Van Erp T; Calhoun VD
    Neuroimage Clin; 2019; 22():101747. PubMed ID: 30921608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinally consistent estimates of intrinsic functional networks.
    Zhao Q; Kwon D; Müller-Oehring EM; Le Berre AP; Pfefferbaum A; Sullivan EV; Pohl KM
    Hum Brain Mapp; 2019 Jun; 40(8):2511-2528. PubMed ID: 30806009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient algorithm for estimating brain covariance networks.
    Cespedes MI; McGree J; Drovandi CC; Mengersen K; Doecke JD; Fripp J;
    PLoS One; 2018; 13(7):e0198583. PubMed ID: 30001336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.