These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 30639916)

  • 1. Proteomic analysis of Saccharomyces cerevisiae response to plasma treatment.
    Stulić V; Vukušić T; Butorac A; Popović D; Herceg Z
    Int J Food Microbiol; 2019 Mar; 292():171-183. PubMed ID: 30639916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Non-Thermal Plasma on Yeast
    Polčic P; Machala Z
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiae.
    Itooka K; Takahashi K; Kimata Y; Izawa S
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2279-2288. PubMed ID: 29356871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.
    Ryu YH; Kim YH; Lee JY; Shim GB; Uhm HS; Park G; Choi EH
    PLoS One; 2013; 8(6):e66231. PubMed ID: 23799081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic response to linoleic acid hydroperoxide in Saccharomyces cerevisiae.
    O'Doherty PJ; Khan A; Johnson AJ; Rogers PJ; Bailey TD; Wu MJ
    FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28449083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence microscopic analysis of antifungal effects of cold atmospheric pressure plasma in Saccharomyces cerevisiae.
    Itooka K; Takahashi K; Izawa S
    Appl Microbiol Biotechnol; 2016 Nov; 100(21):9295-9304. PubMed ID: 27544759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources.
    Zhao S; Zhao X; Zou H; Fu J; Du G; Zhou J; Chen J
    J Proteomics; 2014 Apr; 101():102-12. PubMed ID: 24530623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma.
    Winter T; Bernhardt J; Winter J; Mäder U; Schlüter R; Weltmann KD; Hecker M; Kusch H
    Proteomics; 2013 Sep; 13(17):2608-21. PubMed ID: 23794223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress.
    Lv YJ; Wang X; Ma Q; Bai X; Li BZ; Zhang W; Yuan YJ
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2207-21. PubMed ID: 24442506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The plasma membrane-enriched fraction proteome response during adaptation to hydrogen peroxide in Saccharomyces cerevisiae.
    Pedroso N; Gomes-Alves P; Marinho HS; Brito VB; Boada C; Antunes F; Herrero E; Penque D; Cyrne L
    Free Radic Res; 2012 Oct; 46(10):1267-79. PubMed ID: 22712517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of cold plasma on Citrobacter freundii in apple juice: inactivation kinetics and mechanisms.
    Surowsky B; Fröhling A; Gottschalk N; Schlüter O; Knorr D
    Int J Food Microbiol; 2014 Mar; 174():63-71. PubMed ID: 24462703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.
    Thorsen M; Lagniel G; Kristiansson E; Junot C; Nerman O; Labarre J; Tamás MJ
    Physiol Genomics; 2007 Jun; 30(1):35-43. PubMed ID: 17327492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferrous chloride and ferrous sulfate improve the fungicidal efficacy of cold atmospheric argon plasma on melanized Aureobasidium pullulans.
    Fukuda S; Kawasaki Y; Izawa S
    J Biosci Bioeng; 2019 Jul; 128(1):28-32. PubMed ID: 30679111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive cold plasma particles generate oxidative stress in yeast but do not trigger apoptosis.
    Polčic P; Pakosová L; Chovančíková P; Machala Z
    Can J Microbiol; 2018 Jun; 64(6):367-375. PubMed ID: 29438626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan.
    Zakrzewska A; Boorsma A; Brul S; Hellingwerf KJ; Klis FM
    Eukaryot Cell; 2005 Apr; 4(4):703-15. PubMed ID: 15821130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes.
    Seidel G; Meierhofer D; Şen NE; Guenther A; Krobitsch S; Auburger G
    J Proteome Res; 2017 Feb; 16(2):504-515. PubMed ID: 27966978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM; Tan Y; Yuan YJ
    Proteomics; 2009 Dec; 9(24):5471-83. PubMed ID: 19834894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The activity of plasma membrane H(+)-ATPase is strongly stimulated during Saccharomyces cerevisiae adaptation to growth under high copper stress, accompanying intracellular acidification.
    Fernandes AR; Sá-Correia I
    Yeast; 2001 Apr; 18(6):511-21. PubMed ID: 11284007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions.
    Jiménez-Martí E; Zuzuarregui A; Gomar-Alba M; Gutiérrez D; Gil C; del Olmo M
    Int J Food Microbiol; 2011 Jan; 145(1):211-20. PubMed ID: 21247650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global proteomic analysis of S. cerevisiae (GPS) to identify proteins required for histone modifications.
    Schneider J; Dover J; Johnston M; Shilatifard A
    Methods Enzymol; 2004; 377():227-34. PubMed ID: 14979028
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.