BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30639992)

  • 1. ABA promotes starch synthesis and storage metabolism in dormant grapevine buds.
    Rubio S; Noriega X; Pérez FJ
    J Plant Physiol; 2019; 234-235():1-8. PubMed ID: 30639992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in respiration between dormant and non-dormant buds suggest the involvement of ABA in the development of endodormancy in grapevines.
    Parada F; Noriega X; Dantas D; Bressan-Smith R; Pérez FJ
    J Plant Physiol; 2016 Aug; 201():71-78. PubMed ID: 27448722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen cyanamide induces grape bud endodormancy release through carbohydrate metabolism and plant hormone signaling.
    Liang D; Huang X; Shen Y; Shen T; Zhang H; Lin L; Wang J; Deng Q; Lyu X; Xia H
    BMC Genomics; 2019 Dec; 20(1):1034. PubMed ID: 31888462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sucrose accumulation and endodormancy are synchronized events induced by the short-day photoperiod in grapevine buds.
    Noriega X; Rubio S; Pérez FJ
    Plant Physiol Biochem; 2022 Nov; 190():101-108. PubMed ID: 36108354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abscisic Acid (ABA ) Promotes the Induction and Maintenance of Pear (Pyrus pyrifolia White Pear Group) Flower Bud Endodormancy.
    Li J; Xu Y; Niu Q; He L; Teng Y; Bai S
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29361708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abscisic acid (ABA) and low temperatures synergistically increase the expression of CBF/DREB1 transcription factors and cold-hardiness in grapevine dormant buds.
    Rubio S; Noriega X; Pérez FJ
    Ann Bot; 2019 Mar; 123(4):681-689. PubMed ID: 30418484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ABA Represses the Expression of Cell Cycle Genes and May Modulate the Development of Endodormancy in Grapevine Buds.
    Vergara R; Noriega X; Aravena K; Prieto H; Pérez FJ
    Front Plant Sci; 2017; 8():812. PubMed ID: 28579998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between endodormancy, FLOWERING LOCUS T and cell cycle genes in Vitis vinifera.
    Vergara R; Noriega X; Parada F; Dantas D; Pérez FJ
    Planta; 2016 Feb; 243(2):411-9. PubMed ID: 26438218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism.
    Zheng C; Halaly T; Acheampong AK; Takebayashi Y; Jikumaru Y; Kamiya Y; Or E
    J Exp Bot; 2015 Mar; 66(5):1527-42. PubMed ID: 25560179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dormancy-breaking stimuli "chilling, hypoxia and cyanamide exposure" up-regulate the expression of α-amylase genes in grapevine buds.
    Rubio S; Donoso A; Pérez FJ
    J Plant Physiol; 2014 Mar; 171(6):373-81. PubMed ID: 24594388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell cycle genes are activated earlier than respiratory genes during release of grapevine buds from endodormancy.
    Noriega X; Pérez FJ
    Plant Signal Behav; 2017 Oct; 12(10):e1321189. PubMed ID: 28498020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous abscisic acid enhances physiological, metabolic, and transcriptional cold acclimation responses in greenhouse-grown grapevines.
    Wang H; Blakeslee JJ; Jones ML; Chapin LJ; Dami IE
    Plant Sci; 2020 Apr; 293():110437. PubMed ID: 32081274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abscisic acid catabolism enhances dormancy release of grapevine buds.
    Zheng C; Acheampong AK; Shi Z; Mugzech A; Halaly-Basha T; Shaya F; Sun Y; Colova V; Mosquna A; Ophir R; Galbraith DW; Or E
    Plant Cell Environ; 2018 Oct; 41(10):2490-2503. PubMed ID: 29907961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in abscisic acid metabolism in relation to the maturation of grapevine (Vitis vinifera L., cv. Mencía) somatic embryos.
    Acanda Y; Martínez Ó; Prado MJ; González MV; Rey M
    BMC Plant Biol; 2020 Oct; 20(1):487. PubMed ID: 33097003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sprouting of paradormant and endodormant grapevine buds under conditions of forced growth: similarities and differences.
    Pérez FJ; Noriega X
    Planta; 2018 Oct; 248(4):837-847. PubMed ID: 29936547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen Peroxide Increases during Endodormancy and Decreases during Budbreak in Grapevine (
    Pérez FJ; Noriega X; Rubio S
    Antioxidants (Basel); 2021 May; 10(6):. PubMed ID: 34072287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dormancy-Associated MADS-Box (DAM) and the Abscisic Acid Pathway Regulate Pear Endodormancy Through a Feedback Mechanism.
    Tuan PA; Bai S; Saito T; Ito A; Moriguchi T
    Plant Cell Physiol; 2017 Aug; 58(8):1378-1390. PubMed ID: 28586469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing the Ferguson model for the cold-hardiness of dormant grapevine buds in a temperate and subtropical valley of Chile.
    Rubio S; Pérez FJ
    Int J Biometeorol; 2020 Aug; 64(8):1401-1408. PubMed ID: 32372151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bud dormancy disconnect: latent buds of grapevine are dormant during summer despite a high metabolic rate.
    Velappan Y; Chabikwa TG; Considine JA; Agudelo-Romero P; Foyer CH; Signorelli S; Considine MJ
    J Exp Bot; 2022 Apr; 73(7):2061-2076. PubMed ID: 35022731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression analysis of phytochromes A, B and floral integrator genes during the entry and exit of grapevine-buds from endodormancy.
    Pérez FJ; Kühn N; Vergara R
    J Plant Physiol; 2011 Sep; 168(14):1659-66. PubMed ID: 21453983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.