These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30640373)

  • 1. Did I do that? Detecting a perturbation to visual feedback in a reaching task.
    Gaffin-Cahn E; Hudson TE; Landy MS
    J Vis; 2019 Jan; 19(1):5. PubMed ID: 30640373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proprioceptive recalibration arises slowly compared to reach adaptation.
    Zbib B; Henriques DY; Cressman EK
    Exp Brain Res; 2016 Aug; 234(8):2201-13. PubMed ID: 27014777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to proprioceptive targets following visuomotor adaptation.
    Flannigan JC; Posthuma RJ; Lombardo JN; Murray C; Cressman EK
    Exp Brain Res; 2018 Feb; 236(2):419-432. PubMed ID: 29209829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of visuomotor adaptation on proprioceptive localization: the contributions of perceptual and motor changes.
    Clayton HA; Cressman EK; Henriques DY
    Exp Brain Res; 2014 Jul; 232(7):2073-86. PubMed ID: 24623356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of visuomotor-map uncertainty on visuomotor adaptation.
    Saijo N; Gomi H
    J Neurophysiol; 2012 Mar; 107(6):1576-85. PubMed ID: 22190631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.
    Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C
    Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention of proprioceptive recalibration following visuomotor adaptation.
    Nourouzpour N; Salomonczyk D; Cressman EK; Henriques DY
    Exp Brain Res; 2015 Mar; 233(3):1019-29. PubMed ID: 25537467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalization of reach adaptation and proprioceptive recalibration at different distances in the workspace.
    Mostafa AA; Kamran-Disfani R; Bahari-Kashani G; Cressman EK; Henriques DY
    Exp Brain Res; 2015 Mar; 233(3):817-27. PubMed ID: 25479737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual differences in proprioception predict the extent of implicit sensorimotor adaptation.
    Tsay JS; Kim HE; Parvin DE; Stover AR; Ivry RB
    J Neurophysiol; 2021 Apr; 125(4):1307-1321. PubMed ID: 33656948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the cross-sensory error signal in visuomotor adaptation.
    Salomonczyk D; Cressman EK; Henriques DY
    Exp Brain Res; 2013 Jul; 228(3):313-25. PubMed ID: 23708802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experiencing the Cross-Sensory Error Signal During Movement Leads to Proprioceptive Recalibration.
    Maksimovic S; Neville KM; Cressman EK
    J Mot Behav; 2020; 52(1):122-129. PubMed ID: 30761949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of proprioceptive acuity variability on motor adaptation in older adults.
    Lei Y; Wang J
    Exp Brain Res; 2018 Feb; 236(2):599-608. PubMed ID: 29255917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory recalibration of hand position following visuomotor adaptation.
    Cressman EK; Henriques DY
    J Neurophysiol; 2009 Dec; 102(6):3505-18. PubMed ID: 19828727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visuo-proprioceptive interactions during adaptation of the human reach.
    Judkins T; Scheidt RA
    J Neurophysiol; 2014 Feb; 111(4):868-87. PubMed ID: 24259549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced feedback barely slows down proprioceptive recalibration.
    Ruttle JE; 't Hart BM; Henriques DYP
    J Neurophysiol; 2022 Dec; 128(6):1625-1633. PubMed ID: 36417308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved proprioception does not benefit visuomotor adaptation.
    Decarie A; Cressman EK
    Exp Brain Res; 2022 May; 240(5):1499-1514. PubMed ID: 35366069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correcting for natural visuo-proprioceptive matching errors based on reward as opposed to error feedback does not lead to higher retention.
    Kuling IA; de Brouwer AJ; Smeets JBJ; Flanagan JR
    Exp Brain Res; 2019 Mar; 237(3):735-741. PubMed ID: 30560507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term retention of proprioceptive recalibration.
    Maksimovic S; Cressman EK
    Neuropsychologia; 2018 Jun; 114():65-76. PubMed ID: 29654883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.