These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30640423)

  • 1. Life-Saving Threads: Advances in Textile-Based Analytical Devices.
    Farajikhah S; Cabot JM; Innis PC; Paull B; Wallace G
    ACS Comb Sci; 2019 Apr; 21(4):229-240. PubMed ID: 30640423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances on open fluidic systems for biomedical applications: A review.
    Oliveira NM; Vilabril S; Oliveira MB; Reis RL; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():851-863. PubMed ID: 30678977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic devices based on textile threads for analytical applications: state of the art and prospects.
    Agustini D; Caetano FR; Quero RF; Fracassi da Silva JA; Bergamini MF; Marcolino-Junior LH; de Jesus DP
    Anal Methods; 2021 Oct; 13(41):4830-4857. PubMed ID: 34647544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel 3D textile structures and geometries for electrofluidics.
    Abeywardena SBY; Yue Z; Wallace GG; Innis PC
    Electrophoresis; 2024 Jul; 45(13-14):1171-1181. PubMed ID: 38837441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the electrophoretic separations on a surface-accessible and flexible fibre-based microfluidic devices.
    Khan JU; Pathan MA; Sayyar S; Paull B; Innis PC
    Anal Methods; 2023 Mar; 15(12):1506-1516. PubMed ID: 36847496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Approach toward Electrofluidic Substrates Utilizing Textile-Based Braided Structure.
    Khan JU; Sayyar S; Paull B; Innis PC
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45618-45628. PubMed ID: 32910632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of microfluidic devices based on multi-filament threads and textiles: A review.
    Nilghaz A; Ballerini DR; Shen W
    Biomicrofluidics; 2013 Sep; 7(5):51501. PubMed ID: 24086179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water.
    Caetano FR; Carneiro EA; Agustini D; Figueiredo-Filho LCS; Banks CE; Bergamini MF; Marcolino-Junior LH
    Biosens Bioelectron; 2018 Jan; 99():382-388. PubMed ID: 28806668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-Engraved Textiles for Engineering Capillary Flow and Application in Microfluidics.
    Li Y; Fischer R; Zboray R; Boillat P; Camenzind M; Toncelli C; Rossi RM
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29908-29916. PubMed ID: 32506905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joule Heating-Induced Dispersion in Open Microfluidic Electrophoretic Cytometry.
    Vlassakis J; Herr AE
    Anal Chem; 2017 Dec; 89(23):12787-12796. PubMed ID: 29110464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Microfluidic Micromotors-Based Immunoassay for C-Reactive Protein Determination in Preterm Neonatal Samples with Sepsis Suspicion.
    Molinero-Fernández Á; López MÁ; Escarpa A
    Anal Chem; 2020 Apr; 92(7):5048-5054. PubMed ID: 32154703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.
    Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R
    Methods Mol Biol; 2017; 1572():71-88. PubMed ID: 28299682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing.
    Economou A; Kokkinos C; Prodromidis M
    Lab Chip; 2018 Jun; 18(13):1812-1830. PubMed ID: 29855637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrofluidic control for textile-based cell culture: Identification of appropriate conditions required to integrate cell culture with electrofluidics.
    Abeywardena SBY; Yue Z; Wallace GG; Innis PC
    Electrophoresis; 2024 Jul; 45(13-14):1182-1197. PubMed ID: 38837242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.
    Andrew TL; Zhang L; Cheng N; Baima M; Kim JJ; Allison L; Hoxie S
    Acc Chem Res; 2018 Apr; 51(4):850-859. PubMed ID: 29521501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Enclosed Paper Microfluidic Chip as a Sample Preconcentrator Based on Ion Concentration Polarization.
    Liu N; Phan DT; Lew WS
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1392-1399. PubMed ID: 28792905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics.
    Tarn MD; Pamme N
    Methods Mol Biol; 2017; 1547():69-83. PubMed ID: 28044288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.