These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 30640445)
21. Enzyme architecture: the effect of replacement and deletion mutations of loop 6 on catalysis by triosephosphate isomerase. Zhai X; Go MK; O'Donoghue AC; Amyes TL; Pegan SD; Wang Y; Loria JP; Mesecar AD; Richard JP Biochemistry; 2014 Jun; 53(21):3486-501. PubMed ID: 24825099 [TBL] [Abstract][Full Text] [Related]
22. Modeling the Role of a Flexible Loop and Active Site Side Chains in Hydride Transfer Catalyzed by Glycerol-3-phosphate Dehydrogenase. Mhashal AR; Romero-Rivera A; Mydy LS; Cristobal JR; Gulick AM; Richard JP; Kamerlin SCL ACS Catal; 2020 Oct; 10(19):11253-11267. PubMed ID: 33042609 [TBL] [Abstract][Full Text] [Related]
23. Crystal structures of human glycerol 3-phosphate dehydrogenase 1 (GPD1). Ou X; Ji C; Han X; Zhao X; Li X; Mao Y; Wong LL; Bartlam M; Rao Z J Mol Biol; 2006 Mar; 357(3):858-69. PubMed ID: 16460752 [TBL] [Abstract][Full Text] [Related]
24. Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans. Fillinger S; Ruijter G; Tamás MJ; Visser J; Thevelein JM; d'Enfert C Mol Microbiol; 2001 Jan; 39(1):145-57. PubMed ID: 11123696 [TBL] [Abstract][Full Text] [Related]
25. Isolation and characterization of adipose tissue glycerol-3-phosphate dehydrogenase. Koekemoer TC; Litthauer D; Oelofsen W Int J Biochem Cell Biol; 1995 Jun; 27(6):625-32. PubMed ID: 7671141 [TBL] [Abstract][Full Text] [Related]
26. A paradigm for enzyme-catalyzed proton transfer at carbon: triosephosphate isomerase. Richard JP Biochemistry; 2012 Apr; 51(13):2652-61. PubMed ID: 22409228 [TBL] [Abstract][Full Text] [Related]
27. Enzyme activation through the utilization of intrinsic dianion binding energy. Amyes TL; Malabanan MM; Zhai X; Reyes AC; Richard JP Protein Eng Des Sel; 2017 Mar; 30(3):157-165. PubMed ID: 27903763 [TBL] [Abstract][Full Text] [Related]
28. Uncovering the Role of Key Active-Site Side Chains in Catalysis: An Extended Brønsted Relationship for Substrate Deprotonation Catalyzed by Wild-Type and Variants of Triosephosphate Isomerase. Kulkarni YS; Amyes TL; Richard JP; Kamerlin SCL J Am Chem Soc; 2019 Oct; 141(40):16139-16150. PubMed ID: 31508957 [TBL] [Abstract][Full Text] [Related]
29. Mechanism for activation of triosephosphate isomerase by phosphite dianion: the role of a hydrophobic clamp. Malabanan MM; Koudelka AP; Amyes TL; Richard JP J Am Chem Soc; 2012 Jun; 134(24):10286-98. PubMed ID: 22583393 [TBL] [Abstract][Full Text] [Related]
30. Orotidine 5'-Monophosphate Decarboxylase: Probing the Limits of the Possible for Enzyme Catalysis. Richard JP; Amyes TL; Reyes AC Acc Chem Res; 2018 Apr; 51(4):960-969. PubMed ID: 29595949 [TBL] [Abstract][Full Text] [Related]
31. Isolation and properties of cytoplasmic alpha-glycerol 3-phosphate dehydrogenase from the pectoral muscle of the fruit bat, Eidolon helvum. Agboola FK; Thomson A; Afolayan A J Biochem Mol Biol; 2003 Mar; 36(2):159-66. PubMed ID: 12689513 [TBL] [Abstract][Full Text] [Related]
32. Role of Lys-12 in catalysis by triosephosphate isomerase: a two-part substrate approach. Go MK; Koudelka A; Amyes TL; Richard JP Biochemistry; 2010 Jun; 49(25):5377-89. PubMed ID: 20481463 [TBL] [Abstract][Full Text] [Related]
33. Snapshots of catalysis: the structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate. Choi KH; Shi J; Hopkins CE; Tolan DR; Allen KN Biochemistry; 2001 Nov; 40(46):13868-75. PubMed ID: 11705376 [TBL] [Abstract][Full Text] [Related]
34. Transfer of pro-R hydrogen from NADH to dihydroxyacetonephosphate by sn-glycerol-1-phosphate dehydrogenase from the archaeon Methanothermobacter thermautotrophicus. Koga Y; Sone N; Noguchi S; Morii H Biosci Biotechnol Biochem; 2003 Jul; 67(7):1605-8. PubMed ID: 12913312 [TBL] [Abstract][Full Text] [Related]
35. Enzyme architecture: deconstruction of the enzyme-activating phosphodianion interactions of orotidine 5'-monophosphate decarboxylase. Goldman LM; Amyes TL; Goryanova B; Gerlt JA; Richard JP J Am Chem Soc; 2014 Jul; 136(28):10156-65. PubMed ID: 24958125 [TBL] [Abstract][Full Text] [Related]
36. Biosynthesis in Escherichia coli of sn-glycerol 3-phosphate, a precursor of phospholipid. Kinetic characterization of wild type and feedback-resistant forms of the biosynthetic sn-glycerol-3-phosphate dehydrogenase. Edgar JR; Bell RM J Biol Chem; 1978 Sep; 253(18):6354-63. PubMed ID: 28326 [TBL] [Abstract][Full Text] [Related]
38. A potential target enzyme for trypanocidal drugs revealed by the crystal structure of NAD-dependent glycerol-3-phosphate dehydrogenase from Leishmania mexicana. Suresh S; Turley S; Opperdoes FR; Michels PA; Hol WG Structure; 2000 May; 8(5):541-52. PubMed ID: 10801498 [TBL] [Abstract][Full Text] [Related]
39. Active site of Zn(2+)-dependent sn-glycerol-1-phosphate dehydrogenase from Aeropyrum pernix K1. Han JS; Ishikawa K Archaea; 2005 May; 1(5):311-7. PubMed ID: 15876564 [TBL] [Abstract][Full Text] [Related]
40. Purification and characterization of glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae. Albertyn J; van Tonder A; Prior BA FEBS Lett; 1992 Aug; 308(2):130-2. PubMed ID: 1499720 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]