These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30640471)

  • 1. Sol-Gel Coexisting Phase of Polymer Microgels Triggers Spontaneous Buckling.
    Koyanagi K; Kudo K; Yanagisawa M
    Langmuir; 2019 Feb; 35(6):2283-2288. PubMed ID: 30640471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Buckling and Interfacial Deformation of Fluorescent Poly(
    Hagemans F; Camerin F; Hazra N; Lammertz J; Dux F; Del Monte G; Laukkanen OV; Crassous JJ; Zaccarelli E; Richtering W
    ACS Nano; 2023 Apr; 17(8):7257-7271. PubMed ID: 37053566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Assembly of Anisotropic Core-Shell and Hollow Microgels.
    Nickel AC; Rudov AA; Potemkin II; Crassous JJ; Richtering W
    Langmuir; 2022 Apr; 38(14):4351-4363. PubMed ID: 35349289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-Shell Microgels with Switchable Elasticity at Constant Interfacial Interaction.
    Seuss M; Schmolke W; Drechsler A; Fery A; Seiffert S
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16317-27. PubMed ID: 27276500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Buckling resistance of solid shell bubbles under ultrasound.
    Marmottant P; Bouakaz A; de Jong N; Quilliet C
    J Acoust Soc Am; 2011 Mar; 129(3):1231-9. PubMed ID: 21428486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent Induced Inversion of Core-Shell Microgels.
    Ghavami A; Winkler RG
    ACS Macro Lett; 2017 Jul; 6(7):721-725. PubMed ID: 35650851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple patterns of polymer gels in microspheres due to the interplay among phase separation, wetting, and gelation.
    Yanagisawa M; Nigorikawa S; Sakaue T; Fujiwara K; Tokita M
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):15894-9. PubMed ID: 25349417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collapse-induced phase transitions in binary interfacial microgel monolayers.
    Harrer J; Ciarella S; Rey M; Löwen H; Janssen LMC; Vogel N
    Soft Matter; 2021 May; 17(17):4504-4516. PubMed ID: 33949612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of temperature-responsive copolymer microgels at the oil/water interface.
    Wu Y; Wiese S; Balaceanu A; Richtering W; Pich A
    Langmuir; 2014 Jul; 30(26):7660-9. PubMed ID: 24926817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-Liquid Phase-Separated Systems from Reversible Gel-Sol Transition of Protein Microgels.
    Xu Y; Qi R; Zhu H; Li B; Shen Y; Krainer G; Klenerman D; Knowles TPJ
    Adv Mater; 2021 Aug; 33(33):e2008670. PubMed ID: 34235786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of architecture on the interaction of negatively charged multisensitive poly(N-isopropylacrylamide)-co-methacrylic acid microgels with oppositely charged polyelectrolyte: absorption vs adsorption.
    Kleinen J; Klee A; Richtering W
    Langmuir; 2010 Jul; 26(13):11258-65. PubMed ID: 20377221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphoteric core-shell microgels: contraphilic two-compartment colloidal particles.
    Christodoulakis KE; Vamvakaki M
    Langmuir; 2010 Jan; 26(2):639-47. PubMed ID: 19754064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Counterion Exchange in Peptide-Complexed Core-Shell Microgels.
    Liang J; Xiao X; Chou TM; Libera M
    Langmuir; 2019 Jul; 35(29):9521-9528. PubMed ID: 31242724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer dynamics in responsive microgels: influence of cononsolvency and microgel architecture.
    Scherzinger C; Holderer O; Richter D; Richtering W
    Phys Chem Chem Phys; 2012 Feb; 14(8):2762-8. PubMed ID: 22252036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear-mediated sol-gel transition of regenerated silk allows the formation of Janus-like microgels.
    Toprakcioglu Z; Knowles TPJ
    Sci Rep; 2021 Mar; 11(1):6673. PubMed ID: 33758259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic and viscoelastic interfacial behavior of β-lactoglobulin microgels of varying sizes at fluid interfaces.
    Murphy RW; Farkas BE; Jones OG
    J Colloid Interface Sci; 2016 Mar; 466():12-9. PubMed ID: 26701187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anionic shell shields a cationic core allowing for uptake and release of polyelectrolytes within core-shell responsive microgels.
    Gelissen APH; Scotti A; Turnhoff SK; Janssen C; Radulescu A; Pich A; Rudov AA; Potemkin II; Richtering W
    Soft Matter; 2018 May; 14(21):4287-4299. PubMed ID: 29774926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single Micrometer-Sized Gels: Unique Mechanics and Characters for Applications.
    Yanagisawa M; Watanabe C; Fujiwara K
    Gels; 2018 Mar; 4(2):. PubMed ID: 30674805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthotropic elastic shell model for buckling of microtubules.
    Wang CY; Ru CQ; Mioduchowski A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):052901. PubMed ID: 17279958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmotic buckling of spherical capsules.
    Knoche S; Kierfeld J
    Soft Matter; 2014 Nov; 10(41):8358-69. PubMed ID: 25209240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.