These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30640607)

  • 21. A Deep Learning Approach to Resolve Aliasing Artifacts in Ultrasound Color Flow Imaging.
    Nahas H; Au JS; Ishii T; Yiu BYS; Chee AJY; Yu ACH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2615-2628. PubMed ID: 32746180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Color-flow US imaging through the analysis of speckle motion.
    Gardiner WM; Fox MD
    Radiology; 1989 Sep; 172(3):866-8. PubMed ID: 2672097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-dimensional flow imaging in the carotid bifurcation using a combined speckle tracking and phase-shift estimator: a study based on ultrasound simulations and in vivo analysis.
    Swillens A; Segers P; Lovstakken L
    Ultrasound Med Biol; 2010 Oct; 36(10):1722-35. PubMed ID: 20800949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Programmable ultrasound imaging using multimedia technologies: a next-generation ultrasound machine.
    Kim Y; Kim JH; Basoglu C; Winter TC
    IEEE Trans Inf Technol Biomed; 1997 Mar; 1(1):19-29. PubMed ID: 11020807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust angle-independent blood velocity estimation based on dual-angle plane wave imaging.
    Fadnes S; Ekroll IK; Nyrnes SA; Torp H; Lovstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1757-67. PubMed ID: 26470038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Motion-compensated frame rate up-conversion in carotid ultrasound images using optical flow and manifold learning.
    Yousefi Rizi F; Navabian S; Alizadeh Sani Z
    Turk Kardiyol Dern Ars; 2019 Dec; 47(8):680-686. PubMed ID: 31802770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units.
    Sylwestrzak M; Szlag D; Szkulmowski M; Gorczynska I; Bukowska D; Wojtkowski M; Targowski P
    J Biomed Opt; 2012 Oct; 17(10):100502. PubMed ID: 23042477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware.
    Levin D; Aladl U; Germano G; Slomka P
    Comput Med Imaging Graph; 2005 Sep; 29(6):463-75. PubMed ID: 15979844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo.
    Chérin E; Williams R; Needles A; Liu G; White C; Brown AS; Zhou YQ; Foster FS
    Ultrasound Med Biol; 2006 May; 32(5):683-91. PubMed ID: 16677928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer implementation in the reconstruction of 2-D flow velocity fields in ultrasound Doppler color imaging.
    Fei DY; Fu CT; Liu DD
    Comput Biol Med; 1995 Nov; 25(6):495-503. PubMed ID: 8665795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Video Magnification Applied in Ultrasound.
    Perrot V; Salles S; Vray D; Liebgott H
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):283-288. PubMed ID: 29993388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visualization and GPU-accelerated simulation of medical ultrasound from CT images.
    Kutter O; Shams R; Navab N
    Comput Methods Programs Biomed; 2009 Jun; 94(3):250-66. PubMed ID: 19249113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.
    Oeri M; Bost W; Sénégond N; Tretbar S; Fournelle M
    Ultrasound Med Biol; 2017 Oct; 43(10):2200-2212. PubMed ID: 28669429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An FFT-based flow profiler for high-resolution in vivo investigations.
    Tortoli P; Guidi G; Berti P; Guidi F; Righi D
    Ultrasound Med Biol; 1997; 23(6):899-910. PubMed ID: 9300994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A block matching based approach with multiple simultaneous templates for the real-time 2D ultrasound tracking of liver vessels.
    Shepard AJ; Wang B; Foo TKF; Bednarz BP
    Med Phys; 2017 Nov; 44(11):5889-5900. PubMed ID: 28898419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasound research scanner for real-time synthetic aperture data acquisition.
    Jensen JA; Holm O; Jensen LJ; Bendsen H; Nikolov SI; Tomov BG; Munk P; Hansen M; Salomonsen K; Hansen J; Gormsen K; Pedersen HM; Gammelmark KL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 May; 52(5):881-91. PubMed ID: 16048189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time interactive color flow MR imaging.
    Riederer SJ; Wright RC; Ehman RL; Rossman PJ; Holsinger-Bampton AE; Hangiandreou NJ; Grimm RC
    Radiology; 1991 Oct; 181(1):33-9. PubMed ID: 1887053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking.
    Fadnes S; Nyrnes SA; Torp H; Lovstakken L
    Ultrasound Med Biol; 2014 Oct; 40(10):2379-91. PubMed ID: 25023104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Frame Rate Vector Flow Imaging of the Carotid Bifurcation in Healthy Adults: Comparison With Color Doppler Imaging.
    Goddi A; Bortolotto C; Raciti MV; Fiorina I; Aiani L; Magistretti G; Sacchi A; Tinelli C; Calliada F
    J Ultrasound Med; 2018 Sep; 37(9):2263-2275. PubMed ID: 29574932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High frame rate doppler ultrasound bandwidth imaging for flow instability mapping.
    Yiu BYS; Chee AJY; Tang G; Luo W; Yu ACH
    Med Phys; 2019 Apr; 46(4):1620-1633. PubMed ID: 30734923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.