These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30641282)

  • 1. Comparing "intra operative" tissue engineering strategies for the repair of craniofacial bone defects.
    Hivernaud V; Grimaud F; Guicheux J; Portron S; Pace R; Pilet P; Sourice S; Wuillem S; Bertin H; Roche R; Espitalier F; Weiss P; Corre P
    J Stomatol Oral Maxillofac Surg; 2019 Nov; 120(5):432-442. PubMed ID: 30641282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct comparison of current cell-based and cell-free approaches towards the repair of craniofacial bone defects - A preclinical study.
    Corre P; Merceron C; Longis J; Khonsari RH; Pilet P; Thi TN; Battaglia S; Sourice S; Masson M; Sohier J; Espitalier F; Guicheux J; Weiss P
    Acta Biomater; 2015 Oct; 26():306-17. PubMed ID: 26283163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the stromal vascular fraction from adipose tissue in association with a phosphocalcic scaffold in bone regeneration in an irradiated area.
    Thery A; Bléry P; Malard O; Pilet P; Sourice S; Corre P; Guicheux J; Weiss P; Espitalier F
    J Craniomaxillofac Surg; 2015 Sep; 43(7):1169-76. PubMed ID: 26109235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autologous stromal vascular fraction-loaded hyaluronic acid/gelatin-biphasic calcium phosphate scaffold for bone tissue regeneration.
    Park SS; Park M; Lee BT
    Mater Sci Eng C Mater Biol Appl; 2022 Jan; 132():112533. PubMed ID: 35148865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining a clinically relevant strategy for bone tissue engineering: an "all-in-one" study in nude mice.
    Corre P; Merceron C; Vignes C; Sourice S; Masson M; Durand N; Espitalier F; Pilet P; Cordonnier T; Mercier J; Remy S; Anegon I; Weiss P; Guicheux J
    PLoS One; 2013; 8(12):e81599. PubMed ID: 24349093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone marrow cell extract promotes the regeneration of irradiated bone.
    Michel G; Blery P; Henoux M; Guicheux J; Weiss P; Dugast E; Brouard S; Malard O; Espitalier F
    PLoS One; 2017; 12(5):e0178060. PubMed ID: 28542343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison between bone reconstruction following the use of mesenchymal stem cells and total bone marrow in association with calcium phosphate scaffold in irradiated bone.
    Espitalier F; Vinatier C; Lerouxel E; Guicheux J; Pilet P; Moreau F; Daculsi G; Weiss P; Malard O
    Biomaterials; 2009 Feb; 30(5):763-9. PubMed ID: 19036434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of critical-size mandibular defects in immunoincompetent rats with human adipose-derived stromal cells.
    Streckbein P; Jäckel S; Malik CY; Obert M; Kähling C; Wilbrand JF; Zahner D; Heidinger K; Kampschulte M; Pons-Kühnemann J; Köhler K; Sauer H; Kramer M; Howaldt HP
    J Craniomaxillofac Surg; 2013 Sep; 41(6):496-503. PubMed ID: 23684529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ production of pre-vascularized synthetic bone grafts for regenerating critical-sized defects in rabbits.
    Vidal L; Brennan MÁ; Krissian S; De Lima J; Hoornaert A; Rosset P; Fellah BH; Layrolle P
    Acta Biomater; 2020 Sep; 114():384-394. PubMed ID: 32688088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration in critical-sized bone defect enhanced by introducing osteoinductivity to biphasic calcium phosphate granules.
    Wang D; Tabassum A; Wu G; Deng L; Wismeijer D; Liu Y
    Clin Oral Implants Res; 2017 Mar; 28(3):251-260. PubMed ID: 26970206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of new bone formation in irradiated areas using association of mesenchymal stem cells and total fresh bone marrow mixed with calcium phosphate scaffold.
    Bléry P; Corre P; Malard O; Sourice S; Pilet P; Amouriq Y; Guicheux J; Weiss P; Espitalier F
    J Mater Sci Mater Med; 2014 Dec; 25(12):2711-20. PubMed ID: 25081644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailored Three-Dimensionally Printed Triply Periodic Calcium Phosphate Implants: A Preclinical Study for Craniofacial Bone Repair.
    Paré A; Charbonnier B; Tournier P; Vignes C; Veziers J; Lesoeur J; Laure B; Bertin H; De Pinieux G; Cherrier G; Guicheux J; Gauthier O; Corre P; Marchat D; Weiss P
    ACS Biomater Sci Eng; 2020 Jan; 6(1):553-563. PubMed ID: 32158932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model.
    Ismail T; Osinga R; Todorov A; Haumer A; Tchang LA; Epple C; Allafi N; Menzi N; Largo RD; Kaempfen A; Martin I; Schaefer DJ; Scherberich A
    Acta Biomater; 2017 Nov; 63():236-245. PubMed ID: 28893630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure.
    Park JW; Kim ES; Jang JH; Suh JY; Park KB; Hanawa T
    Clin Oral Implants Res; 2010 Mar; 21(3):268-76. PubMed ID: 20074242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of a biphasic calcium phosphate on bone healing: a pilot study in rats.
    Escobar T; Almeida e Sousa J; Portela A; Vasconcelos M; Faria de Almeida R
    Int J Oral Maxillofac Implants; 2014; 29(6):1322-31. PubMed ID: 25397795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic and local innate immune responses to surgical co-transplantation of mesenchymal stromal cells and biphasic calcium phosphate for bone regeneration.
    Rana N; Suliman S; Mohamed-Ahmed S; Gavasso S; Gjertsen BT; Mustafa K
    Acta Biomater; 2022 Mar; 141():440-453. PubMed ID: 34968726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hyperbaric oxygen on demineralized bone matrix and biphasic calcium phosphate bone substitutes.
    Jan A; Sándor GK; Brkovic BB; Peel S; Kim YD; Xiao WZ; Evans AW; Clokie CM
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Jan; 109(1):59-66. PubMed ID: 19846327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of bone defects in rat radii with a composite of allogeneic adipose-derived stem cells and heterogeneous deproteinized bone.
    Liu J; Zhou P; Long Y; Huang C; Chen D
    Stem Cell Res Ther; 2018 Mar; 9(1):79. PubMed ID: 29587852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.