BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30641333)

  • 1. Lignin monomer in steam explosion assist chemical treated cotton stalk affects sugar release.
    Wang Y; Gong X; Hu X; Zhou N
    Bioresour Technol; 2019 Mar; 276():343-348. PubMed ID: 30641333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol.
    Keshav PK; Naseeruddin S; Rao LV
    Bioresour Technol; 2016 Aug; 214():363-370. PubMed ID: 27155264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum.
    Huang Y; Wei X; Zhou S; Liu M; Tu Y; Li A; Chen P; Wang Y; Zhang X; Tai H; Peng L; Xia T
    Bioresour Technol; 2015 Apr; 181():224-30. PubMed ID: 25656866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic saccharification of high pressure assist-alkali pretreated cotton stalk and structural characterization.
    Du SK; Su X; Yang W; Wang Y; Kuang M; Ma L; Fang D; Zhou D
    Carbohydr Polym; 2016 Apr; 140():279-86. PubMed ID: 26876855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis.
    Kapoor M; Raj T; Vijayaraj M; Chopra A; Gupta RP; Tuli DK; Kumar R
    Carbohydr Polym; 2015 Jun; 124():265-73. PubMed ID: 25839820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment.
    Garmakhany AD; Kashaninejad M; Aalami M; Maghsoudlou Y; Khomieri M; Tabil LG
    J Sci Food Agric; 2014 Jun; 94(8):1607-13. PubMed ID: 24186725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a steam explosion pretreatment on sugar production by enzymatic hydrolysis and structural properties of reed straw.
    Hu Q; Su X; Tan L; Liu X; Wu A; Su D; Tian K; Xiong X
    Biosci Biotechnol Biochem; 2013; 77(11):2181-7. PubMed ID: 24200776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deconstruction of corncob by steam explosion pretreatment: Correlations between sugar conversion and recalcitrant structures.
    Zhang X; Yuan Q; Cheng G
    Carbohydr Polym; 2017 Jan; 156():351-356. PubMed ID: 27842833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Enzymatic Hydrolysis and Structure Properties of Bamboo by Moderate Two-Step Pretreatment.
    Yang J; Xu H; Jiang J; Zhang N; Xie J; Zhao J; Wei M
    Appl Biochem Biotechnol; 2021 Apr; 193(4):1011-1022. PubMed ID: 33237555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions.
    Zahoor ; Tu Y; Wang L; Xia T; Sun D; Zhou S; Wang Y; Li Y; Zhang H; Zhang T; Madadi M; Peng L
    Bioresour Technol; 2017 Nov; 243():319-326. PubMed ID: 28683384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose.
    Qin L; Liu L; Li WC; Zhu JQ; Li BZ; Yuan YJ
    Bioresour Technol; 2016 Jun; 209():172-9. PubMed ID: 26970919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of enzymatic digestibility of Eucalyptus grandis pretreated by NaOH catalyzed steam explosion.
    Park JY; Kang M; Kim JS; Lee JP; Choi WI; Lee JS
    Bioresour Technol; 2012 Nov; 123():707-12. PubMed ID: 22939603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content.
    Pan X; Xie D; Gilkes N; Gregg DJ; Saddler JN
    Appl Biochem Biotechnol; 2005; 121-124():1069-79. PubMed ID: 15930582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High solids all-inclusive polysaccharide hydrolysis of steam-exploded corn pericarp by periodic peristalsis.
    Khatun MHA; Wang L; Chen H
    Carbohydr Polym; 2020 Oct; 246():116483. PubMed ID: 32747226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intensification of steam explosion and structural intricacies impacting sugar recovery.
    Gaur R; Semwal S; Raj T; Yadav Lamba B; Ramu E; Gupta RP; Kumar R; Puri SK
    Bioresour Technol; 2017 Oct; 241():692-700. PubMed ID: 28614764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses.
    Monschein M; Nidetzky B
    Bioresour Technol; 2016 Jan; 200():287-96. PubMed ID: 26496218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chestnut shell as unexploited source of fermentable sugars: effect of different pretreatment methods on enzymatic saccharification.
    Maurelli L; Ionata E; La Cara F; Morana A
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1104-18. PubMed ID: 23640265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion.
    Scholl AL; Menegol D; Pitarelo AP; Fontana RC; Zandoná Filho A; Ramos LP; Dillon AJ; Camassola M
    Bioresour Technol; 2015 Sep; 192():228-37. PubMed ID: 26038327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of Nicotine Removal and Ethanol Fermentability From Tobacco Stalk by Integration of Dilute Sulfuric Acid Presoak and Instant Catapult Steam Explosion Pretreatment.
    Zhang H; Fu C; Ren T; Xie H; Mao G; Wang Z; Wang F; Song A
    Front Bioeng Biotechnol; 2021; 9():763549. PubMed ID: 34778234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.