These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 30641475)

  • 1. Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech.
    Saha SK; Saikot FK; Rahman MS; Jamal MAHM; Rahman SMK; Islam SMR; Kim KH
    Mol Ther Nucleic Acids; 2019 Mar; 14():212-238. PubMed ID: 30641475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins of Programmable Nucleases for Genome Engineering.
    Chandrasegaran S; Carroll D
    J Mol Biol; 2016 Feb; 428(5 Pt B):963-89. PubMed ID: 26506267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TALENs-an indispensable tool in the era of CRISPR: a mini review.
    Bhardwaj A; Nain V
    J Genet Eng Biotechnol; 2021 Aug; 19(1):125. PubMed ID: 34420096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals.
    Wani AK; Akhtar N; Singh R; Prakash A; Raza SHA; Cavalu S; Chopra C; Madkour M; Elolimy A; Hashem NM
    Vet Res Commun; 2023 Jan; 47(1):1-16. PubMed ID: 35781172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects.
    Li H; Yang Y; Hong W; Huang M; Wu M; Zhao X
    Signal Transduct Target Ther; 2020 Jan; 5(1):1. PubMed ID: 32296011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designed nucleases for targeted genome editing.
    Lee J; Chung JH; Kim HM; Kim DW; Kim H
    Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels.
    Bennett EP; Petersen BL; Johansen IE; Niu Y; Yang Z; Chamberlain CA; Met Ö; Wandall HH; Frödin M
    Nucleic Acids Res; 2020 Dec; 48(21):11958-11981. PubMed ID: 33170255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement.
    Sun Y; Li J; Xia L
    Front Plant Sci; 2016; 7():1928. PubMed ID: 28066481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A beginner's guide to gene editing.
    Harrison PT; Hart S
    Exp Physiol; 2018 Apr; 103(4):439-448. PubMed ID: 29282799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9.
    Koo T; Lee J; Kim JS
    Mol Cells; 2015 Jun; 38(6):475-81. PubMed ID: 25985872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene editing using ssODNs with engineered endonucleases.
    Chen F; Pruett-Miller SM; Davis GD
    Methods Mol Biol; 2015; 1239():251-65. PubMed ID: 25408411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of CRISPR associated genome engineering: application, advances and future prospects of genome targeting tool for crop improvement.
    Afzal S; Sirohi P; Singh NK
    Biotechnol Lett; 2020 Sep; 42(9):1611-1632. PubMed ID: 32642978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Alternative Nucleases in the Age of CRISPR/Cas9.
    Guha TK; Edgell DR
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editing with engineered nucleases in plants.
    Osakabe Y; Osakabe K
    Plant Cell Physiol; 2015 Mar; 56(3):389-400. PubMed ID: 25416289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision Genome Editing Techniques in Gene Therapy: Current State and Future Prospects.
    Singh K; Bhushan B; Kumar S; Singh S; Macadangdang RR; Pandey E; Varma AK; Kumar S
    Curr Gene Ther; 2024; 24(5):377-394. PubMed ID: 38258771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock.
    Yuan YG; Liu SZ; Farhab M; Lv MY; Zhang T; Cao SX
    Funct Integr Genomics; 2024 May; 24(3):81. PubMed ID: 38709433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vivo Delivery Systems for Therapeutic Genome Editing.
    Wang L; Li F; Dang L; Liang C; Wang C; He B; Liu J; Li D; Wu X; Xu X; Lu A; Zhang G
    Int J Mol Sci; 2016 Apr; 17(5):. PubMed ID: 27128905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome editing comes of age.
    Kim JS
    Nat Protoc; 2016 Sep; 11(9):1573-8. PubMed ID: 27490630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CRISPR/Cas9 system for plant genome editing and beyond.
    Bortesi L; Fischer R
    Biotechnol Adv; 2015; 33(1):41-52. PubMed ID: 25536441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.