These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 30641475)

  • 21. Basics of genome editing technology and its application in livestock species.
    Petersen B
    Reprod Domest Anim; 2017 Aug; 52 Suppl 3():4-13. PubMed ID: 28815851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene editing and CRISPR in the clinic: current and future perspectives.
    Hirakawa MP; Krishnakumar R; Timlin JA; Carney JP; Butler KS
    Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32207531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Progress in and Prospects of Genome Editing Tools for Human Disease Model Development and Therapeutic Applications.
    Phan HTL; Kim K; Lee H; Seong JK
    Genes (Basel); 2023 Feb; 14(2):. PubMed ID: 36833410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent progress in CRISPR/Cas9-based genome editing for enhancing plant disease resistance.
    Boubakri H
    Gene; 2023 May; 866():147334. PubMed ID: 36871676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene Editing in Clinical Practice: Where are We?
    Mittal RD
    Indian J Clin Biochem; 2019 Jan; 34(1):19-25. PubMed ID: 30728669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases.
    Ishida K; Gee P; Hotta A
    Int J Mol Sci; 2015 Oct; 16(10):24751-71. PubMed ID: 26501275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The CRISPR-Cas system for plant genome editing: advances and opportunities.
    Kumar V; Jain M
    J Exp Bot; 2015 Jan; 66(1):47-57. PubMed ID: 25371501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome editing of oncogenes with ZFNs and TALENs: caveats in nuclease design.
    Shankar S; Sreekumar A; Prasad D; Das AV; Pillai MR
    Cancer Cell Int; 2018; 18():169. PubMed ID: 30386178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Methods to Assess
    Nadakuduti SS; Starker CG; Ko DK; Jayakody TB; Buell CR; Voytas DF; Douches DS
    Front Plant Sci; 2019; 10():110. PubMed ID: 30800139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategies for In Vivo Genome Editing in Nondividing Cells.
    Nami F; Basiri M; Satarian L; Curtiss C; Baharvand H; Verfaillie C
    Trends Biotechnol; 2018 Aug; 36(8):770-786. PubMed ID: 29685818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation.
    Yu H; Wu Z; Chen X; Ji Q; Tao S
    mSystems; 2020 Sep; 5(5):. PubMed ID: 32963098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene editing in small and large animals for translational medicine: a review.
    Mariano CG; de Oliveira VC; Ambrósio CE
    Anim Reprod; 2024; 21(1):e20230089. PubMed ID: 38628493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome editing: the road of CRISPR/Cas9 from bench to clinic.
    Eid A; Mahfouz MM
    Exp Mol Med; 2016 Oct; 48(10):e265. PubMed ID: 27741224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering of Zinc Finger Nucleases Through Structural Modeling Improves Genome Editing Efficiency in Cells.
    Katayama S; Watanabe M; Kato Y; Nomura W; Yamamoto T
    Adv Sci (Weinh); 2024 Jun; 11(23):e2310255. PubMed ID: 38600709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potentials, prospects and applications of genome editing technologies in livestock production.
    Raza SHA; Hassanin AA; Pant SD; Bing S; Sitohy MZ; Abdelnour SA; Alotaibi MA; Al-Hazani TM; Abd El-Aziz AH; Cheng G; Zan L
    Saudi J Biol Sci; 2022 Apr; 29(4):1928-1935. PubMed ID: 35531207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome editing in cardiovascular diseases.
    Strong A; Musunuru K
    Nat Rev Cardiol; 2017 Jan; 14(1):11-20. PubMed ID: 27609628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases.
    Kim D; Luk K; Wolfe SA; Kim JS
    Annu Rev Biochem; 2019 Jun; 88():191-220. PubMed ID: 30883196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome Editing in Sugarcane: Challenges Ahead.
    Mohan C
    Front Plant Sci; 2016; 7():1542. PubMed ID: 27790238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
    Demirci Y; Zhang B; Unver T
    J Cell Physiol; 2018 Mar; 233(3):1844-1859. PubMed ID: 28430356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.