BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30642044)

  • 1. Effect of Hydrophobic and Hydrophilic Metal Oxide Nanoparticles on the Performance of Xanthan Gum Solutions for Heavy Oil Recovery.
    Corredor LM; Husein MM; Maini BB
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30642044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silica Nanoparticles in Xanthan Gum Solutions: Oil Recovery Efficiency in Core Flooding Tests.
    Buitrago-Rincon DL; Sadtler V; Mercado RA; Roques-Carmes T; Marchal P; Muñoz-Navarro SF; Sandoval M; Pedraza-Avella JA; Lemaitre C
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Salt Concentration on Oil Recovery during Polymer Flooding: Simulation Studies on Xanthan Gum and Gum Arabic.
    Olabode O; Akinsanya O; Daramola O; Sowunmi A; Osakwe C; Benjamin S; Samuel I
    Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability, microstructural and rheological properties of Pickering emulsion stabilized by xanthan gum/lysozyme nanoparticles coupled with xanthan gum.
    Li Z; Zheng S; Zhao C; Liu M; Zhang Z; Xu W; Luo D; Shah BR
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2387-2394. PubMed ID: 33132128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Silica Nanoparticles in Xanthan Gum Solutions: Evolution of Viscosity over Time.
    Buitrago-Rincon DL; Sadtler V; Mercado RA; Roques-Carmes T; Benyahia L; Durand A; Ferji K; Marchal P; Pedraza-Avella JA; Lemaitre C
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Stability of Gel Foams Stabilized by Xanthan Gum, Silica Nanoparticles and Surfactants.
    Sheng Y; Yan C; Li Y; Peng Y; Ma L; Wang Q
    Gels; 2021 Oct; 7(4):. PubMed ID: 34698155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Investigation of the Effect of Adding Nanoparticles to Polymer Flooding in Water-Wet Micromodels.
    Rueda E; Akarri S; Torsæter O; Moreno RBZL
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32751330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of Xanthan Gum for a High-Temperature and High-Salinity Reservoir.
    Said M; Haq B; Al Shehri D; Rahman MM; Muhammed NS; Mahmoud M
    Polymers (Basel); 2021 Dec; 13(23):. PubMed ID: 34883714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial and emulsion stabilized behavior of lysozyme/xanthan gum nanoparticles.
    Xu W; Jin W; Huang K; Huang L; Lou Y; Li J; Liu X; Li B
    Int J Biol Macromol; 2018 Oct; 117():280-286. PubMed ID: 29842955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sonosynthesis and characterization of konjac gum/xanthan gum supported ironoxide nanoparticles.
    Özbaş F; Tüzün E; Yıldız A; Karakuş S
    Int J Biol Macromol; 2021 Jul; 183():1047-1057. PubMed ID: 33984379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheological behavior of xanthan gum suspensions with Fe-based nanoparticles: the effect of nanoparticles and the mechanism.
    Zhan W; Zhong H; Liu G; Liu X
    Soft Matter; 2023 Oct; 19(40):7684-7690. PubMed ID: 37791910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evaluation of oil recovery mechanism using a variety of surface-modified silica nanoparticles: Role of in-situ surface-modification in oil-wet system.
    Adil M; Mohd Zaid H; Raza F; Agam MA
    PLoS One; 2020; 15(7):e0236837. PubMed ID: 32730369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biopolymer produced by Rhizobium viscosum CECT 908 is a promising agent for application in microbial enhanced oil recovery.
    Couto MR; Gudiña EJ; Ferreira D; Teixeira JA; Rodrigues LR
    N Biotechnol; 2019 Mar; 49():144-150. PubMed ID: 30445186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic gelation of xanthan gum with locust bean gum: a rheological investigation.
    Copetti G; Grassi M; Lapasin R; Pricl S
    Glycoconj J; 1997 Dec; 14(8):951-61. PubMed ID: 9486428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic stability of Fe-based nanoparticles with rheological modification by xanthan gum: A critical stabilization concentration and the underlying mechanism.
    Liu G; Zhan W; Huo L; Chen W; Zhong H
    Int J Biol Macromol; 2024 May; 266(Pt 1):131270. PubMed ID: 38556237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Emulsion Stabilization Properties of Gum Tragacanth, Xanthan Gum and Sucrose Monopalmitate: A Comparative Study.
    Pocan P; Ilhan E; Oztop MH
    J Food Sci; 2019 May; 84(5):1087-1093. PubMed ID: 30958906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of the Xanthan Gum Polymer and Sodium Dodecylbenzenesulfonate Surfactant in Sandstone Reservoirs: Experimental and Density Function Theory Studies.
    Azmi GE; Saada AM; Shokir EM; El-Deab MS; Attia AM; Omar WAE
    ACS Omega; 2022 Oct; 7(42):37237-37247. PubMed ID: 36312333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Internal-Phase Pickering Emulsions Stabilized by Xanthan Gum/Lysozyme Nanoparticles: Rheological and Microstructural Perspective.
    Xu W; Li Z; Sun H; Zheng S; Li H; Luo D; Li Y; Wang M; Wang Y
    Front Nutr; 2021; 8():744234. PubMed ID: 35071292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscosity modification enhanced the migration and distribution of colloidal Mg(OH)
    Li B; Pu S; Mandal S; Li M
    Environ Int; 2020 May; 138():105658. PubMed ID: 32203808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of physicochemical properties, microstructure and stability of lotus root starch/xanthan gum stabilized emulsion by multi-frequency power ultrasound.
    Liang Q; Zhou C; Rehman A; Qayum A; Liu Y; Ren X
    Ultrason Sonochem; 2023 Dec; 101():106687. PubMed ID: 37976566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.