BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30642054)

  • 1. Improving of the Photovoltaic Characteristics of Dye-Sensitized Solar Cells Using a Photoelectrode with Electrospun Porous TiO₂ Nanofibers.
    Jo MS; Cho JS; Wang XL; Jin EM; Jeong SM; Kang DW
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30642054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designed architecture of multiscale porous TiO2 nanofibers for dye-sensitized solar cells photoanode.
    Hwang SH; Kim C; Song H; Son S; Jang J
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5287-92. PubMed ID: 22985179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A double layered TiO2 photoanode consisting of hierarchical flowers and nanoparticles for high-efficiency dye-sensitized solar cells.
    Wu WQ; Xu YF; Rao HS; Su CY; Kuang DB
    Nanoscale; 2013 May; 5(10):4362-9. PubMed ID: 23571714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Graphene/TiO₂ Composite Layer on the Performance of Dye-Sensitized Solar Cells.
    Wei L; Chen S; Yang Y; Dong Y; Song W; Fan R
    J Nanosci Nanotechnol; 2018 Feb; 18(2):976-983. PubMed ID: 29448522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of TiO2 nanoparticle-accumulated bilayer photoelectrode and condenser lens-assisted solar concentrator on light harvesting in dye-sensitized solar cells.
    Moon KJ; Lee SW; Lee YH; Kim JH; Ahn JY; Lee SJ; Lee DW; Kim SH
    Nanoscale Res Lett; 2013 Jun; 8(1):283. PubMed ID: 23758633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Template-free TiO
    Gaikwad MA; Mane AA; Desai SP; Moholkar AV
    J Colloid Interface Sci; 2017 Feb; 488():269-276. PubMed ID: 27837717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple recipe for an efficient TiO2 nanofiber-based dye-sensitized solar cell.
    Nair AS; Jose R; Shengyuan Y; Ramakrishna S
    J Colloid Interface Sci; 2011 Jan; 353(1):39-45. PubMed ID: 20934187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved performance of dye-sensitized solar cells using dual-function TiO(2) nanowire photoelectrode.
    Akbar ZA; Oh JH; Hadmojo WT; Yang SJ; Do YR; Jang SY
    Opt Express; 2015 Sep; 23(19):A1280-7. PubMed ID: 26406757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of TiO2 Particle Size on the Performance of Flexible Dye Sensitized Solar Cells.
    Li ZY; Akhtar MS; Yang OB
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6675-9. PubMed ID: 26716227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells.
    Chen HY; Zhang TL; Fan J; Kuang DB; Su CY
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9205-11. PubMed ID: 23962052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes.
    Yun TK; Park SS; Kim D; Shim JH; Bae JY; Huh S; Won YS
    Dalton Trans; 2012 Jan; 41(4):1284-8. PubMed ID: 22124477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional Ag-decorated porous TiO2 nanofibers in dye-sensitized solar cells: efficient light harvesting, light scattering, and electrolyte contact.
    Hwang SH; Song H; Lee J; Jang J
    Chemistry; 2014 Sep; 20(40):12974-81. PubMed ID: 25138442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical TiO2 flowers built from TiO2 nanotubes for efficient Pt-free based flexible dye-sensitized solar cells.
    Lei BX; Luo QP; Yu XY; Wu WQ; Su CY; Kuang DB
    Phys Chem Chem Phys; 2012 Oct; 14(38):13175-9. PubMed ID: 22914771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application.
    Peng W; Yanagida M; Han L; Ahmed S
    Nanotechnology; 2011 Jul; 22(27):275709. PubMed ID: 21597134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Properties of Zinc Oxide Nanorods Grown on Al-Doped Zinc Oxide Seed Layer and Their Applications in Dye-Sensitized Solar Cells.
    Kim KH; Utashiro K; Abe Y; Kawamura M
    Materials (Basel); 2014 Mar; 7(4):2522-2533. PubMed ID: 28788581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal fabrication of quasi-one-dimensional single-crystalline anatase TiO2 nanostructures on FTO glass and their applications in dye-sensitized solar cells.
    Liao JY; Lei BX; Wang YF; Liu JM; Su CY; Kuang DB
    Chemistry; 2011 Jan; 17(4):1352-7. PubMed ID: 21243703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Improved Dye-Sensitized Solar Cells with Anatase/Rutile TiO₂Nanofibers.
    Zheng D; Xiong J; Guo P; Li Y; Gu H
    J Nanosci Nanotechnol; 2016 Jan; 16(1):613-8. PubMed ID: 27398496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes.
    Ding J; Li Y; Hu H; Bai L; Zhang S; Yuan N
    Nanoscale Res Lett; 2013 Jan; 8(1):9. PubMed ID: 23286741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KNbO
    Cucatti S; Gularte LT; Fernandes CD; Dadalto Carvalho R; Ferrer MM; Gomes Jardim PL; Raubach CW; da Silva Cava S; Moreira ML
    Dalton Trans; 2023 May; 52(18):5976-5982. PubMed ID: 37039394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Efficiency in Dye-Sensitized Solar Cells by Electron Transport and Light Scattering on Freestanding TiO₂ Nanotube Arrays.
    Rho WY; Song DH; Lee SH; Jun BH
    Nanomaterials (Basel); 2017 Oct; 7(10):. PubMed ID: 29064413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.