These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 30642063)
1. Evaluation of Grain Boundary Network and Improvement of Intergranular Cracking Resistance in 316L Stainless Steel after Grain Boundary Engineering. Liu T; Xia S; Bai Q; Zhou B; Lu Y; Shoji T Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30642063 [TBL] [Abstract][Full Text] [Related]
2. In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel. Rahimi S; Engelberg DL; Duff JA; Marrow TJ J Microsc; 2009 Mar; 233(3):423-31. PubMed ID: 19250463 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional geometrical and topological characteristics of grains in conventional and grain boundary engineered 316L stainless steel. Liu T; Xia S; Zhou B; Bai Q; Rohrer GS Micron; 2018 Jun; 109():58-70. PubMed ID: 29665457 [TBL] [Abstract][Full Text] [Related]
4. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. King A; Johnson G; Engelberg D; Ludwig W; Marrow J Science; 2008 Jul; 321(5887):382-5. PubMed ID: 18635797 [TBL] [Abstract][Full Text] [Related]
5. The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel. Engelberg DL; Humphreys FJ; Marrow TJ J Microsc; 2008 Jun; 230(Pt 3):435-44. PubMed ID: 18503670 [TBL] [Abstract][Full Text] [Related]
6. Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel. Barcellini C; Dumbill S; Jimenez-Melero E J Microsc; 2019 Apr; 274(1):3-12. PubMed ID: 30561019 [TBL] [Abstract][Full Text] [Related]
7. Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels. Meisnar M; Vilalta-Clemente A; Gholinia A; Moody M; Wilkinson AJ; Huin N; Lozano-Perez S Micron; 2015 Aug; 75():1-10. PubMed ID: 25974882 [TBL] [Abstract][Full Text] [Related]
8. A Review on Controlling Grain Boundary Character Distribution during Twinning-Related Grain Boundary Engineering of Face-Centered Cubic Materials. Zhang YQ; Quan GZ; Zhao J; Yu YZ; Xiong W Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444876 [TBL] [Abstract][Full Text] [Related]
9. A new approach to grain boundary engineering for nanocrystalline materials. Kobayashi S; Tsurekawa S; Watanabe T Beilstein J Nanotechnol; 2016; 7():1829-1849. PubMed ID: 28144533 [TBL] [Abstract][Full Text] [Related]
10. Plan-view characterization of intergranular precipitates on grain boundaries by combination of FIB lift out method and TEM analyses: A case study in austenitic stainless steel. Sato K; Kaneko K; Hara T; Kawahara Y; Hamada JI; Takushima C; Teranishi R Micron; 2020 Nov; 138():102927. PubMed ID: 32905976 [TBL] [Abstract][Full Text] [Related]
11. Crystallographic orientation data from chloride-induced stress corrosion crack (CISCC) paths in gas tungsten arc welded (GTAW) austenitic stainless steel 304L. Qu HJ; Wharry JP Data Brief; 2022 Jun; 42():108059. PubMed ID: 35345845 [TBL] [Abstract][Full Text] [Related]
12. Crystallographic Evaluation of Susceptibility to Intergranular Corrosion in Austenitic Stainless Steel with Various Degrees of Sensitization. Fujii T; Furumoto T; Tohgo K; Shimamura Y Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32019096 [TBL] [Abstract][Full Text] [Related]
13. In Situ Study of Precipitates' Effect on Grain Deformation Behavior and Mechanical Properties of S31254 Super Austenitic Stainless Steel. Ma J; Tan H; Dong N; Gao J; Wang P; Wang Z; Han P Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893942 [TBL] [Abstract][Full Text] [Related]
14. Effect of Cold-Rolling Reduction on Recrystallization Microstructure, Texture and Corrosion Properties of the X2CrNi12 Ferritic Stainless Steel. Li R; Fu B; Wang Y; Li J; Dong T; Li G; Zhang G; Liu J Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234254 [TBL] [Abstract][Full Text] [Related]
15. Influencing Mechanisms of Prior Cold Deformation on Mixed Grain Boundary Network in the Thermal Deformation of Ni80A Superalloy. Zhang YQ; Quan GZ; Zhao J; Xiong W Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143738 [TBL] [Abstract][Full Text] [Related]
16. The Localized Corrosion and Stress Corrosion Cracking of a 6005A-T6 Extrusion Profile. Ma J; Sun J; Guan Q; Yang Q; Tang J; Zou C; Wang J; Tang B; Kou H; Wang H; Gao J; Li J; Wang WY Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501014 [TBL] [Abstract][Full Text] [Related]
17. Statistical physics of grain-boundary engineering. McGarrity ES; Duxbury PM; Holm EA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026102. PubMed ID: 15783373 [TBL] [Abstract][Full Text] [Related]
18. Bending Fatigue Behavior of 316L Stainless Steel up to Very High Cycle Fatigue Regime. Hu Y; Chen Y; He C; Liu Y; Wang Q; Wang C Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33126746 [TBL] [Abstract][Full Text] [Related]
19. Level-Set Modeling of Grain Growth in 316L Stainless Steel under Different Assumptions Regarding Grain Boundary Properties. Murgas B; Flipon B; Bozzolo N; Bernacki M Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407765 [TBL] [Abstract][Full Text] [Related]
20. Laser surface modification of 316L stainless steel. Balla VK; Dey S; Muthuchamy AA; Janaki Ram GD; Das M; Bandyopadhyay A J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]