These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 30642118)
1. Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices. Hsu JC; Hsu CH; Huang YW Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642118 [TBL] [Abstract][Full Text] [Related]
2. Radiation dominated acoustophoresis driven by surface acoustic waves. Guo J; Kang Y; Ai Y J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191 [TBL] [Abstract][Full Text] [Related]
3. 3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics. Namnabat MS; Moghimi Zand M; Houshfar E Sci Rep; 2021 Jun; 11(1):13326. PubMed ID: 34172758 [TBL] [Abstract][Full Text] [Related]
4. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation. Dong J; Liang D; Yang X; Sun C Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898 [TBL] [Abstract][Full Text] [Related]
5. Microparticle Manipulation by Standing Surface Acoustic Waves with Dual-frequency Excitations. Zhou Y; Sriphutkiat Y J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199023 [TBL] [Abstract][Full Text] [Related]
6. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers. Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714 [TBL] [Abstract][Full Text] [Related]
7. The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation. Soliman AM; Eldosoky MA; Taha TE Bioengineering (Basel); 2017 Mar; 4(2):. PubMed ID: 28952506 [TBL] [Abstract][Full Text] [Related]
8. Theory of acoustophoresis in counterpropagating surface acoustic wave fields for particle separation. Liu Z; Xu G; Ni Z; Chen X; Guo X; Tu J; Zhang D Phys Rev E; 2021 Mar; 103(3-1):033104. PubMed ID: 33862812 [TBL] [Abstract][Full Text] [Related]
9. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder. Liang S; Chaohui W Phys Rev E; 2018 Mar; 97(3-1):033103. PubMed ID: 29776072 [TBL] [Abstract][Full Text] [Related]
10. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
11. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I. Sachs S; Baloochi M; Cierpka C; König J Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303 [TBL] [Abstract][Full Text] [Related]
12. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications. Sankaranarayanan SK; Bhethanabotla VR IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):631-43. PubMed ID: 19411221 [TBL] [Abstract][Full Text] [Related]
13. Comparisons of the acoustic radiation force of ultrasonic standing waves in half-wavelength and quarter-wavelength micro-resonators of cylindrical geometry. Yang IH; Kim N Ultrasonics; 2024 Mar; 138():107267. PubMed ID: 38367402 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Yazdi S; Lin SC; Ding X; Chiang IK; Sharp K; Huang TJ Lab Chip; 2011 Jul; 11(14):2319-24. PubMed ID: 21709881 [TBL] [Abstract][Full Text] [Related]
18. Standing Surface Acoustic Wave-Assisted Fabrication of Region-Selective Microstructures via User-Defined Waveguides. Wang Y; Han C; Mei D Langmuir; 2019 Aug; 35(34):11225-11231. PubMed ID: 31390213 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Acoustophoretic and Dielectrophoretic Forces for Droplet Injection in Droplet-Based Microfluidic Devices. De Lora JA; Aubermann F; Frey C; Jahnke T; Wang Y; Weber S; Platzman I; Spatz JP ACS Omega; 2024 Apr; 9(14):16097-16105. PubMed ID: 38617618 [TBL] [Abstract][Full Text] [Related]
20. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform. Wang Q; Maramizonouz S; Stringer Martin M; Zhang J; Ong HL; Liu Q; Yang X; Rahmati M; Torun H; Ng WP; Wu Q; Binns R; Fu Y Ultrasonics; 2024 Jan; 136():107149. PubMed ID: 37703751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]