These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30642131)

  • 21. Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach?
    Wouda FJ; Giuberti M; Bellusci G; Veltink PH
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strengthening the perception of the virtual worlds in a virtual reality environment.
    Połap D; Kęsik K; Winnicka A; Woźniak M
    ISA Trans; 2020 Jul; 102():397-406. PubMed ID: 32127167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The need to approximate the use-case in clinical machine learning.
    Saeb S; Lonini L; Jayaraman A; Mohr DC; Kording KP
    Gigascience; 2017 May; 6(5):1-9. PubMed ID: 28327985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards On-Demand Virtual Physical Therapist: Machine Learning-Based Patient Action Understanding, Assessment and Task Recommendation.
    Wei W; McElroy C; Dey S
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1824-1835. PubMed ID: 31398126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Training software using virtual-reality technology and pre-calculated effective dose data.
    Ding A; Zhang D; Xu XG
    Health Phys; 2009 May; 96(5):594-601. PubMed ID: 19359853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Driver behavior profiling: An investigation with different smartphone sensors and machine learning.
    Ferreira J; Carvalho E; Ferreira BV; de Souza C; Suhara Y; Pentland A; Pessin G
    PLoS One; 2017; 12(4):e0174959. PubMed ID: 28394925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utilizing Smartphone-Based Machine Learning in Medical Monitor Data Collection: Seven Segment Digit Recognition.
    Shenoy VN; Aalami OO
    AMIA Annu Symp Proc; 2017; 2017():1564-1570. PubMed ID: 29854226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone.
    Lahdenoja O; Hurnanen T; Iftikhar Z; Nieminen S; Knuutila T; Saraste A; Kiviniemi T; Vasankari T; Airaksinen J; Pankaala M; Koivisto T
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):108-118. PubMed ID: 28391210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches.
    Salamone F; Bellazzi A; Belussi L; Damato G; Danza L; Dell'Aquila F; Ghellere M; Megale V; Meroni I; Vitaletti W
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Collaborative Sensing with Interactive Learning using Dynamic Intelligent Virtual Sensors.
    Tegen A; Davidsson P; Mihailescu RC; Persson JA
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30682809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards a Machine-Learning Approach for Sickness Prediction in 360° Stereoscopic Videos.
    Padmanaban N; Ruban T; Sitzmann V; Norcia AM; Wetzstein G
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1594-1603. PubMed ID: 29553929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Falling and Drowning Detection Framework Using Smartphone Sensors.
    Alqahtani A; Alsubai S; Sha M; Peter V; Almadhor AS; Abbas S
    Comput Intell Neurosci; 2022; 2022():6468870. PubMed ID: 35990165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developing a Machine Learning Algorithm to Predict the Probability of Medical Staff Work Mode Using Human-Smartphone Interaction Patterns: Algorithm Development and Validation Study.
    Chen HH; Lu HH; Weng WH; Lin YH
    J Med Internet Res; 2023 Dec; 25():e48834. PubMed ID: 38157232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of machine learning techniques for the identification of human activities from inertial sensors available in a mobile device after the application of data imputation techniques.
    Pires IM; Hussain F; Marques G; Garcia NM
    Comput Biol Med; 2021 Aug; 135():104638. PubMed ID: 34256257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Handheld Device-Based Indoor Localization with Zero Infrastructure (HDIZI).
    AlSahly AM; Hassan MM; Saleem K; Alabrah A; Rodrigues JJPC
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of a Drone in Virtual Reality Using MEMS Sensor Technology and Machine Learning.
    Covaciu F; Iordan AE
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensor Fusion for Recognition of Activities of Daily Living.
    Wu J; Feng Y; Sun P
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Periodic leg movement (PLM) monitoring using a distributed body sensor network.
    Madhushri P; Ahmed B; Penzel T; Jovanov E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1837-40. PubMed ID: 26736638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fall Detection Using Smartphone Audio Features.
    Cheffena M
    IEEE J Biomed Health Inform; 2016 Jul; 20(4):1073-80. PubMed ID: 25915965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.