These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 30642159)
1. Dextran-Coated Iron Oxide Nanoparticles as Biomimetic Catalysts for Localized and pH-Activated Biofilm Disruption. Naha PC; Liu Y; Hwang G; Huang Y; Gubara S; Jonnakuti V; Simon-Soro A; Kim D; Gao L; Koo H; Cormode DP ACS Nano; 2019 May; 13(5):4960-4971. PubMed ID: 30642159 [TBL] [Abstract][Full Text] [Related]
2. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Gao L; Liu Y; Kim D; Li Y; Hwang G; Naha PC; Cormode DP; Koo H Biomaterials; 2016 Sep; 101():272-84. PubMed ID: 27294544 [TBL] [Abstract][Full Text] [Related]
3. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. Horev B; Klein MI; Hwang G; Li Y; Kim D; Koo H; Benoit DS ACS Nano; 2015 Mar; 9(3):2390-404. PubMed ID: 25661192 [TBL] [Abstract][Full Text] [Related]
4. Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Liu Y; Naha PC; Hwang G; Kim D; Huang Y; Simon-Soro A; Jung HI; Ren Z; Li Y; Gubara S; Alawi F; Zero D; Hara AT; Cormode DP; Koo H Nat Commun; 2018 Jul; 9(1):2920. PubMed ID: 30065293 [TBL] [Abstract][Full Text] [Related]
5. Oral biofilm elimination by combining iron-based nanozymes and hydrogen peroxide-producing bacteria. Wang Y; Shen X; Ma S; Guo Q; Zhang W; Cheng L; Ding L; Xu Z; Jiang J; Gao L Biomater Sci; 2020 May; 8(9):2447-2458. PubMed ID: 32096497 [TBL] [Abstract][Full Text] [Related]
6. Cranberry Flavonoids Modulate Cariogenic Properties of Mixed-Species Biofilm through Exopolysaccharides-Matrix Disruption. Kim D; Hwang G; Liu Y; Wang Y; Singh AP; Vorsa N; Koo H PLoS One; 2015; 10(12):e0145844. PubMed ID: 26713438 [TBL] [Abstract][Full Text] [Related]
7. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms. He J; Hwang G; Liu Y; Gao L; Kilpatrick-Liverman L; Santarpia P; Zhou X; Koo H J Bacteriol; 2016 Oct; 198(19):2651-61. PubMed ID: 27161116 [TBL] [Abstract][Full Text] [Related]
8. Iron oxide nanozymes stabilize stannous fluoride for targeted biofilm killing and synergistic oral disease prevention. Huang Y; Liu Y; Pandey N; Shah S; Simon-Soro A; Hsu J; Ren Z; Xiang Z; Kim D; Ito T; Oh MJ; Buckley C; Alawi F; Li Y; Smeets P; Boyer S; Zhao X; Joester D; Zero D; Cormode D; Koo H Res Sq; 2023 Apr; ():. PubMed ID: 37066293 [TBL] [Abstract][Full Text] [Related]
9. Precision targeting of bacterial pathogen via bi-functional nanozyme activated by biofilm microenvironment. Huang Y; Liu Y; Shah S; Kim D; Simon-Soro A; Ito T; Hajfathalian M; Li Y; Hsu JC; Nieves LM; Alawi F; Naha PC; Cormode DP; Koo H Biomaterials; 2021 Jan; 268():120581. PubMed ID: 33302119 [TBL] [Abstract][Full Text] [Related]
11. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Klein MI; Hwang G; Santos PH; Campanella OH; Koo H Front Cell Infect Microbiol; 2015; 5():10. PubMed ID: 25763359 [TBL] [Abstract][Full Text] [Related]
12. Acid-Induced Self-Catalyzing Platform Based on Dextran-Coated Copper Peroxide Nanoaggregates for Biofilm Treatment. Li M; Lan X; Han X; Shi S; Sun H; Kang Y; Dan J; Sun J; Zhang W; Wang J ACS Appl Mater Interfaces; 2021 Jun; 13(25):29269-29280. PubMed ID: 34143595 [TBL] [Abstract][Full Text] [Related]
13. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Liu Y; Ren Y; Li Y; Su L; Zhang Y; Huang F; Liu J; Liu J; van Kooten TG; An Y; Shi L; van der Mei HC; Busscher HJ Acta Biomater; 2018 Oct; 79():331-343. PubMed ID: 30172935 [TBL] [Abstract][Full Text] [Related]
14. High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles. Shaterabadi Z; Nabiyouni G; Soleymani M Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():947-956. PubMed ID: 28415550 [TBL] [Abstract][Full Text] [Related]
15. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Yu M; Huang S; Yu KJ; Clyne AM Int J Mol Sci; 2012; 13(5):5554-5570. PubMed ID: 22754315 [TBL] [Abstract][Full Text] [Related]
16. Silver-polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro. Ionescu AC; Brambilla E; Travan A; Marsich E; Donati I; Gobbi P; Turco G; Di Lenarda R; Cadenaro M; Paoletti S; Breschi L J Dent; 2015 Dec; 43(12):1483-90. PubMed ID: 26477347 [TBL] [Abstract][Full Text] [Related]
17. Dual-sensitive antibacterial peptide nanoparticles prevent dental caries. Zhang P; Wu S; Li J; Bu X; Dong X; Chen N; Li F; Zhu J; Sang L; Zeng Y; Liang S; Yu Z; Liu Z Theranostics; 2022; 12(10):4818-4833. PubMed ID: 35832082 [No Abstract] [Full Text] [Related]
18. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ Grown Dental Biofilms. Schlafer S; Ibsen CJ; Birkedal H; Nyvad B Caries Res; 2017; 51(1):26-33. PubMed ID: 27960182 [TBL] [Abstract][Full Text] [Related]
19. Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. Abdulkareem EH; Memarzadeh K; Allaker RP; Huang J; Pratten J; Spratt D J Dent; 2015 Dec; 43(12):1462-9. PubMed ID: 26497232 [TBL] [Abstract][Full Text] [Related]
20. In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis. Fatani EJ; Almutairi HH; Alharbi AO; Alnakhli YO; Divakar DD; Muzaheed ; Alkheraif AA; Khan AA Microb Pathog; 2017 Nov; 112():190-194. PubMed ID: 28966064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]