These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30642160)

  • 1. Enhanced and Faster Potassium Storage in Graphene with Respect to Graphite: A Comparative Study with Lithium Storage.
    Sonia FJ; Jangid MK; Aslam M; Johari P; Mukhopadhyay A
    ACS Nano; 2019 Feb; 13(2):2190-2204. PubMed ID: 30642160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Surface Modification on the Lithium, Sodium, and Potassium Intercalation Efficiency and Capacity of Few-Layer Graphene Electrodes.
    Nijamudheen A; Sarbapalli D; Hui J; Rodríguez-López J; Mendoza-Cortes JL
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19393-19401. PubMed ID: 32109048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer Number Dependence of Li(+) Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution.
    Hui J; Burgess M; Zhang J; Rodríguez-López J
    ACS Nano; 2016 Apr; 10(4):4248-57. PubMed ID: 26943950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Operando Probing of Lithium-Ion Storage on Single-Layer Graphene.
    Ni K; Wang X; Tao Z; Yang J; Shu N; Ye J; Pan F; Xie J; Tan Z; Sun X; Liu J; Qi Z; Chen Y; Wu X; Zhu Y
    Adv Mater; 2019 Jun; 31(23):e1808091. PubMed ID: 30972870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced electrochemical lithium storage by graphene nanoribbons.
    Bhardwaj T; Antic A; Pavan B; Barone V; Fahlman BD
    J Am Chem Soc; 2010 Sep; 132(36):12556-8. PubMed ID: 20731378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for the synthesis of graphene, graphene nanoribbons, nanoscrolls and related materials.
    Maitra U; Matte HS; Kumar P; Rao CN
    Chimia (Aarau); 2012; 66(12):941-8. PubMed ID: 23394279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene.
    Brownson DA; Varey SA; Hussain F; Haigh SJ; Banks CE
    Nanoscale; 2014; 6(3):1607-21. PubMed ID: 24337073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model.
    Kong XK; Chen QW
    Phys Chem Chem Phys; 2013 Aug; 15(31):12982-7. PubMed ID: 23817454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Li absorption and intercalation in single layer graphene and few layer graphene by first principles.
    Lee E; Persson KA
    Nano Lett; 2012 Sep; 12(9):4624-8. PubMed ID: 22920219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of Lithium Storage on Graphene and Its Derivatives.
    Liu Y; Artyukhov VI; Liu M; Harutyunyan AR; Yakobson BI
    J Phys Chem Lett; 2013 May; 4(10):1737-42. PubMed ID: 26282987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application.
    Kumar A; Reddy AL; Mukherjee A; Dubey M; Zhan X; Singh N; Ci L; Billups WE; Nagurny J; Mital G; Ajayan PM
    ACS Nano; 2011 Jun; 5(6):4345-9. PubMed ID: 21609023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy.
    Share K; Cohn AP; Carter RE; Pint CL
    Nanoscale; 2016 Sep; 8(36):16435-16439. PubMed ID: 27714105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations between preparation methods, structural features and electrochemical Li-storage behavior of reduced graphene oxide.
    Sonia FJ; Kalita H; Aslam M; Mukhopadhyay A
    Nanoscale; 2017 Aug; 9(31):11303-11317. PubMed ID: 28762416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes.
    Share K; Cohn AP; Carter R; Rogers B; Pint CL
    ACS Nano; 2016 Oct; 10(10):9738-9744. PubMed ID: 27718549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel 2D Layered Molybdenum Ditelluride Encapsulated in Few-Layer Graphene as High-Performance Anode for Lithium-Ion Batteries.
    Ma N; Jiang XY; Zhang L; Wang XS; Cao YL; Zhang XZ
    Small; 2018 Apr; 14(14):e1703680. PubMed ID: 29488317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of graphene films by rapid heating and quenching at ambient pressures and their electrochemical characterization.
    David L; Bhandavat R; Kulkarni G; Pahwa S; Zhong Z; Singh G
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):546-52. PubMed ID: 23268553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nernstian Li
    Hui J; Nijamudheen A; Sarbapalli D; Xia C; Qu Z; Mendoza-Cortes JL; Rodríguez-López J
    Chem Sci; 2020 Oct; 12(2):559-568. PubMed ID: 34163786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium Ion Batteries with Graphitic Materials.
    Luo W; Wan J; Ozdemir B; Bao W; Chen Y; Dai J; Lin H; Xu Y; Gu F; Barone V; Hu L
    Nano Lett; 2015 Nov; 15(11):7671-7. PubMed ID: 26509225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles analysis of defect-mediated Li adsorption on graphene.
    Yildirim H; Kinaci A; Zhao ZJ; Chan MK; Greeley JP
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21141-50. PubMed ID: 25394787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unlocking high capacities of graphite anodes for potassium-ion batteries.
    Carboni M; Naylor AJ; Valvo M; Younesi R
    RSC Adv; 2019 Jul; 9(36):21070-21074. PubMed ID: 35515520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.