These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 30642248)
1. Ubiquitin fusion proteins in algae: implications for cell biology and the spread of photosynthesis. Sibbald SJ; Hopkins JF; Filloramo GV; Archibald JM BMC Genomics; 2019 Jan; 20(1):38. PubMed ID: 30642248 [TBL] [Abstract][Full Text] [Related]
2. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Curtis BA; Tanifuji G; Burki F; Gruber A; Irimia M; Maruyama S; Arias MC; Ball SG; Gile GH; Hirakawa Y; Hopkins JF; Kuo A; Rensing SA; Schmutz J; Symeonidi A; Elias M; Eveleigh RJ; Herman EK; Klute MJ; Nakayama T; Oborník M; Reyes-Prieto A; Armbrust EV; Aves SJ; Beiko RG; Coutinho P; Dacks JB; Durnford DG; Fast NM; Green BR; Grisdale CJ; Hempel F; Henrissat B; Höppner MP; Ishida K; Kim E; Kořený L; Kroth PG; Liu Y; Malik SB; Maier UG; McRose D; Mock T; Neilson JA; Onodera NT; Poole AM; Pritham EJ; Richards TA; Rocap G; Roy SW; Sarai C; Schaack S; Shirato S; Slamovits CH; Spencer DF; Suzuki S; Worden AZ; Zauner S; Barry K; Bell C; Bharti AK; Crow JA; Grimwood J; Kramer R; Lindquist E; Lucas S; Salamov A; McFadden GI; Lane CE; Keeling PJ; Gray MW; Grigoriev IV; Archibald JM Nature; 2012 Dec; 492(7427):59-65. PubMed ID: 23201678 [TBL] [Abstract][Full Text] [Related]
3. Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae. Tanifuji G; Onodera NT; Brown MW; Curtis BA; Roger AJ; Ka-Shu Wong G; Melkonian M; Archibald JM BMC Genomics; 2014 May; 15(1):374. PubMed ID: 24885563 [TBL] [Abstract][Full Text] [Related]
4. Polyploidy of endosymbiotically derived genomes in complex algae. Hirakawa Y; Ishida K Genome Biol Evol; 2014 Apr; 6(4):974-80. PubMed ID: 24709562 [TBL] [Abstract][Full Text] [Related]
5. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. Cenci U; Sibbald SJ; Curtis BA; Kamikawa R; Eme L; Moog D; Henrissat B; Maréchal E; Chabi M; Djemiel C; Roger AJ; Kim E; Archibald JM BMC Biol; 2018 Nov; 16(1):137. PubMed ID: 30482201 [TBL] [Abstract][Full Text] [Related]
6. Nucleomorph Small RNAs in Cryptophyte and Chlorarachniophyte Algae. Åsman AKM; Curtis BA; Archibald JM Genome Biol Evol; 2019 Apr; 11(4):1117-1134. PubMed ID: 30949682 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary Dynamics of Cryptophyte Plastid Genomes. Kim JI; Moore CE; Archibald JM; Bhattacharya D; Yi G; Yoon HS; Shin W Genome Biol Evol; 2017 Jul; 9(7):1859-1872. PubMed ID: 28854597 [TBL] [Abstract][Full Text] [Related]
8. Nucleomorph Genome Sequences of Two Chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata. Suzuki S; Shirato S; Hirakawa Y; Ishida K Genome Biol Evol; 2015 May; 7(6):1533-45. PubMed ID: 26002880 [TBL] [Abstract][Full Text] [Related]
9. Evolution and Diversity of Pre-mRNA Splicing in Highly Reduced Nucleomorph Genomes. Wong DK; Grisdale CJ; Fast NM Genome Biol Evol; 2018 Jun; 10(6):1573-1583. PubMed ID: 29860351 [TBL] [Abstract][Full Text] [Related]
11. Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences. Nozaki H; Ohta N; Matsuzaki M; Misumi O; Kuroiwa T J Mol Evol; 2003 Oct; 57(4):377-82. PubMed ID: 14708571 [TBL] [Abstract][Full Text] [Related]
12. Prospective function of FtsZ proteins in the secondary plastid of chlorarachniophyte algae. Hirakawa Y; Ishida K BMC Plant Biol; 2015 Nov; 15():276. PubMed ID: 26556725 [TBL] [Abstract][Full Text] [Related]
13. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Hackett JD; Yoon HS; Li S; Reyes-Prieto A; Rümmele SE; Bhattacharya D Mol Biol Evol; 2007 Aug; 24(8):1702-13. PubMed ID: 17488740 [TBL] [Abstract][Full Text] [Related]
14. Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics. Tanifuji G; Archibald JM; Hashimoto T Sci Rep; 2016 Feb; 6():21016. PubMed ID: 26888293 [TBL] [Abstract][Full Text] [Related]
15. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168 [TBL] [Abstract][Full Text] [Related]
16. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Insight into the diversity and evolution of the cryptomonad nucleomorph genome. Lane CE; Khan H; MacKinnon M; Fong A; Theophilou S; Archibald JM; Mol Biol Evol; 2006 May; 23(5):856-65. PubMed ID: 16306383 [TBL] [Abstract][Full Text] [Related]
17. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Patron NJ; Inagaki Y; Keeling PJ Curr Biol; 2007 May; 17(10):887-91. PubMed ID: 17462896 [TBL] [Abstract][Full Text] [Related]
18. Comparative mitochondrial genomics of cryptophyte algae: gene shuffling and dynamic mobile genetic elements. Kim JI; Yoon HS; Yi G; Shin W; Archibald JM BMC Genomics; 2018 Apr; 19(1):275. PubMed ID: 29678149 [TBL] [Abstract][Full Text] [Related]
19. Nucleomorph ribosomal DNA and telomere dynamics in chlorarachniophyte algae. Silver TD; Moore CE; Archibald JM J Eukaryot Microbiol; 2010; 57(6):453-9. PubMed ID: 21040099 [TBL] [Abstract][Full Text] [Related]
20. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended. Nozaki H J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]