These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30642249)

  • 1. AMYCO: evaluation of mutational impact on prion-like proteins aggregation propensity.
    Iglesias V; Conchillo-Sole O; Batlle C; Ventura S
    BMC Bioinformatics; 2019 Jan; 20(1):24. PubMed ID: 30642249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfecting prediction of mutational impact on the aggregation propensity of the ALS-associated hnRNPA2 prion-like protein.
    Batlle C; Fernández MR; Iglesias V; Ventura S
    FEBS Lett; 2017 Jul; 591(13):1966-1971. PubMed ID: 28542905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural and pathogenic protein sequence variation affecting prion-like domains within and across human proteomes.
    Cascarina SM; Ross ED
    BMC Genomics; 2020 Jan; 21(1):23. PubMed ID: 31914925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation and degradation scales for prion-like domains: sequence features and context weigh in.
    Cascarina SM; Ross ED
    Curr Genet; 2019 Apr; 65(2):387-392. PubMed ID: 30310993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating the aggregation activity of human prion-like proteins.
    Cascarina SM; Paul KR; Ross ED
    Prion; 2017 Sep; 11(5):323-331. PubMed ID: 28934062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition-based prediction and rational manipulation of prion-like domain recruitment to stress granules.
    Boncella AE; Shattuck JE; Cascarina SM; Paul KR; Baer MH; Fomicheva A; Lamb AK; Ross ED
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5826-5835. PubMed ID: 32127480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Mutations on the Aggregation Propensity of the Human Prion-Like Protein hnRNPA2B1.
    Paul KR; Molliex A; Cascarina S; Boncella AE; Taylor JP; Ross ED
    Mol Cell Biol; 2017 Apr; 37(8):. PubMed ID: 28137911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Cross-Beta Supersecondary Structure by Soft-Amyloid Cores: Strategies for Their Prediction and Characterization.
    Fernández MR; Pallarès I; Iglesias V; Santos J; Ventura S
    Methods Mol Biol; 2019; 1958():237-261. PubMed ID: 30945222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the aggregation propensity of prion sequences.
    Espargaró A; Busquets MA; Estelrich J; Sabate R
    Virus Res; 2015 Sep; 207():127-35. PubMed ID: 25747492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloidogenesis of Tau protein.
    Nizynski B; Dzwolak W; Nieznanski K
    Protein Sci; 2017 Nov; 26(11):2126-2150. PubMed ID: 28833749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease.
    March ZM; King OD; Shorter J
    Brain Res; 2016 Sep; 1647():9-18. PubMed ID: 26996412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores.
    Zambrano R; Conchillo-Sole O; Iglesias V; Illa R; Rousseau F; Schymkowitz J; Sabate R; Daura X; Ventura S
    Nucleic Acids Res; 2015 Jul; 43(W1):W331-7. PubMed ID: 25977297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prion-like proteins and their computational identification in proteomes.
    Batlle C; Iglesias V; Navarro S; Ventura S
    Expert Rev Proteomics; 2017 Apr; 14(4):335-350. PubMed ID: 28271922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The protonation state of histidine 111 regulates the aggregation of the evolutionary most conserved region of the human prion protein.
    Fonseca-Ornelas L; Zweckstetter M
    Protein Sci; 2016 Aug; 25(8):1563-7. PubMed ID: 27184108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PrP P102L and Nearby Lysine Mutations Promote Spontaneous
    Kraus A; Raymond GJ; Race B; Campbell KJ; Hughson AG; Anson KJ; Raymond LD; Caughey B
    J Virol; 2017 Nov; 91(21):. PubMed ID: 28835493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein.
    Sengupta I; Udgaonkar JB
    Chem Commun (Camb); 2018 Jun; 54(49):6230-6242. PubMed ID: 29789820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct effects of mutations on biophysical properties of human prion protein monomers and oligomers.
    Yu Y; Yu Z; Zheng Z; Wang H; Wu X; Guo C; Lin D
    Acta Biochim Biophys Sin (Shanghai); 2016 Nov; 48(11):1016-1025. PubMed ID: 27649893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein aggregation.
    Khalili K; Farzam F; Dabirmanesh B; Khajeh K
    Prog Mol Biol Transl Sci; 2024; 206():229-263. PubMed ID: 38811082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryo-EM structure of disease-related prion fibrils provides insights into seeding barriers.
    Li Q; Jaroniec CP; Surewicz WK
    Nat Struct Mol Biol; 2022 Oct; 29(10):962-965. PubMed ID: 36097290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.