These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30642513)

  • 1. Statistical prediction of load carriage mode and magnitude from inertial sensor derived gait kinematics.
    Lim S; D'Souza C
    Appl Ergon; 2019 Apr; 76():1-11. PubMed ID: 30642513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Effects of Two-Handed Side and Anterior Load Carriage on Thoracic-Pelvic Coordination Using Wearable Gyroscopes.
    Lim S; D'Souza C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do load carriage and walking speed influence trunk coordination and stride parameters?
    LaFiandra M; Wagenaar RC; Holt KG; Obusek JP
    J Biomech; 2003 Jan; 36(1):87-95. PubMed ID: 12485642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinematic comparison of gait with a backpack versus a trolley for load carriage in children.
    Orantes-Gonzalez E; Heredia-Jimenez J; Robinson MA
    Appl Ergon; 2019 Oct; 80():28-34. PubMed ID: 31280807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dynamical systems analysis of assisted and unassisted anterior and posterior hand-held load carriage.
    Graham RB; Smallman CL; Miller RH; Stevenson JM
    Ergonomics; 2015; 58(3):480-91. PubMed ID: 25396694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in postural sway and gait characteristics as a consequence of anterior load carriage.
    Roberts M; Talbot C; Kay A; Price M; Hill M
    Gait Posture; 2018 Oct; 66():139-145. PubMed ID: 30193176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Load Position and Weight Classification during Carrying Gait Using Wearable Inertial and Electromyographic Sensors.
    Goršič M; Dai B; Novak D
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic changes in gait during low magnitude military load carriage.
    Majumdar D; Pal MS; Pramanik A; Majumdar D
    Ergonomics; 2013; 56(12):1917-27. PubMed ID: 24164415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of load carriage systems used by active duty police officers: Relative effects on walking patterns and perceived comfort.
    Ramstrand N; Zügner R; Larsen LB; Tranberg R
    Appl Ergon; 2016 Mar; 53 Pt A():36-43. PubMed ID: 26674402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gender and Parity in Statistical Prediction of Anterior Carry Hand-Loads from Inertial Sensor Data.
    Lim S; D'Souza C
    Proc Hum Factors Ergon Soc Annu Meet; 2019 Nov; 63(1):. PubMed ID: 32322144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of a 12.8-km military load carriage activity on lower limb gait mechanics and muscle activity.
    Rice H; Fallowfield J; Allsopp A; Dixon S
    Ergonomics; 2017 May; 60(5):649-656. PubMed ID: 27462759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sling-based infant carrying affects lumbar and thoracic spine neuromechanics during standing and walking.
    Schmid S; Stauffer M; Jäger J; List R; Lorenzetti S
    Gait Posture; 2019 Jan; 67():172-180. PubMed ID: 30343249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters.
    Birrell SA; Haslam RA
    Ergonomics; 2009 Oct; 52(10):1298-304. PubMed ID: 19787507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the mode of load carriage on the static posture of the pelvic girdle and the thoracic and lumbar spine in vivo.
    Filaire M; Vacheron JJ; Vanneuville G; Poumarat G; Garcier JM; Harouna Y; Guillot M; Terver S; Toumi H; Thierry C
    Surg Radiol Anat; 2001; 23(1):27-31. PubMed ID: 11370138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait coordination in pregnancy: transverse pelvic and thoracic rotations and their relative phase.
    Wu W; Meijer OG; Lamoth CJ; Uegaki K; van Dieën JH; Wuisman PI; de Vries JI; Beek PJ
    Clin Biomech (Bristol, Avon); 2004 Jun; 19(5):480-8. PubMed ID: 15182983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of spino-pelvic and postural alignment parameters on gait kinematics.
    Otayek J; Bizdikian AJ; Yared F; Saad E; Bakouny Z; Massaad A; Ghanimeh J; Labaki C; Skalli W; Ghanem I; Kreichati G; Assi A
    Gait Posture; 2020 Feb; 76():318-326. PubMed ID: 31891899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring Biomechanical Risk in Lifting Load Tasks Through Wearable System and Machine-Learning Approach.
    Conforti I; Mileti I; Del Prete Z; Palermo E
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pregnant "waddle": an evaluation of torso kinematics in pregnancy.
    McCrory JL; Chambers AJ; Daftary A; Redfern MS
    J Biomech; 2014 Sep; 47(12):2964-8. PubMed ID: 25108664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.
    Fantozzi S; Giovanardi A; Borra D; Gatta G
    PLoS One; 2015; 10(9):e0138105. PubMed ID: 26368131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of thigh holster use on kinematics and kinetics of active duty police officers.
    Larsen LB; Tranberg R; Ramstrand N
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():77-82. PubMed ID: 27380202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.