These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 30642901)

  • 1. Yersinia pestis Exploits Early Activation of MyD88 for Growth in the Lungs during Pneumonic Plague.
    Olson RM; Dhariwala MO; Mitchell WJ; Anderson DM
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30642901
    [No Abstract]   [Full Text] [Related]  

  • 2. Modification of the Pulmonary MyD88 Inflammatory Response Underlies the Role of the Yersinia pestis Pigmentation Locus in Primary Pneumonic Plague.
    Olson RM; Dhariwala MO; Mitchell WJ; Skyberg JA; Anderson DM
    Infect Immun; 2021 Feb; 89(3):. PubMed ID: 33257532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of Type I Interferon through a Noncanonical Toll-Like Receptor 7 Pathway during Yersinia pestis Infection.
    Dhariwala MO; Olson RM; Anderson DM
    Infect Immun; 2017 Nov; 85(11):. PubMed ID: 28847850
    [No Abstract]   [Full Text] [Related]  

  • 4. Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague.
    Vagima Y; Zauberman A; Levy Y; Gur D; Tidhar A; Aftalion M; Shafferman A; Mamroud E
    PLoS Pathog; 2015 May; 11(5):e1004893. PubMed ID: 25974210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shift from primary pneumonic to secondary septicemic plague by decreasing the volume of intranasal challenge with Yersinia pestis in the murine model.
    Olson RM; Anderson DM
    PLoS One; 2019; 14(5):e0217440. PubMed ID: 31121001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed inflammatory response to primary pneumonic plague occurs in both outbred and inbred mice.
    Bubeck SS; Cantwell AM; Dube PH
    Infect Immun; 2007 Feb; 75(2):697-705. PubMed ID: 17101642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemokine receptor CXCR2 mediates bacterial clearance rather than neutrophil recruitment in a murine model of pneumonic plague.
    Eisele NA; Lee-Lewis H; Besch-Williford C; Brown CR; Anderson DM
    Am J Pathol; 2011 Mar; 178(3):1190-200. PubMed ID: 21356370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tn-Seq Analysis Identifies Genes Important for Yersinia pestis Adherence during Primary Pneumonic Plague.
    Eichelberger KR; Sepúlveda VE; Ford J; Selitsky SR; Mieczkowski PA; Parker JS; Goldman WE
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32759339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Toll/interleukin (IL)-1 receptor domain protein from Yersinia pestis interacts with mammalian IL-1/Toll-like receptor pathways but does not play a central role in the virulence of Y. pestis in a mouse model of bubonic plague.
    Spear AM; Rana RR; Jenner DC; Flick-Smith HC; Oyston PCF; Simpson P; Matthews SJ; Byrne B; Atkins HS
    Microbiology (Reading); 2012 Jun; 158(Pt 6):1593-1606. PubMed ID: 22403187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague.
    van Lier CJ; Sha J; Kirtley ML; Cao A; Tiner BL; Erova TE; Cong Y; Kozlova EV; Popov VL; Baze WB; Chopra AK
    Infect Immun; 2014 Jun; 82(6):2485-503. PubMed ID: 24686064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of Heme Oxygenase Expression by Cobalt Protoporphyrin Treatment Prevents Pneumonic Plague Caused by Inhalation of
    Willix JL; Stockton JL; Olson RM; Anderson PE; Anderson DM
    Antimicrob Agents Chemother; 2020 Mar; 64(4):. PubMed ID: 32015027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence.
    Eddy JL; Schroeder JA; Zimbler DL; Caulfield AJ; Lathem WW
    J Thromb Haemost; 2016 Sep; 14(9):1833-43. PubMed ID: 27377187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of inflammation and pneumonia during infection with nonpigmented Yersinia pestis reveals a new role for the pgm locus in pathogenesis.
    Lee-Lewis H; Anderson DM
    Infect Immun; 2010 Jan; 78(1):220-30. PubMed ID: 19841077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Invasiveness of the Yersinia pestis ail protein contributes to host dissemination in pneumonic and oral plague.
    Zhang Y; Ying X; He Y; Jiang L; Zhang S; Bartra SS; Plano GV; Klena JD; Skurnik M; Chen H; Cai H; Chen T
    Microb Pathog; 2020 Apr; 141():103993. PubMed ID: 31988008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Braun lipoprotein (Lpp) contributes to virulence of yersiniae: potential role of Lpp in inducing bubonic and pneumonic plague.
    Sha J; Agar SL; Baze WB; Olano JP; Fadl AA; Erova TE; Wang S; Foltz SM; Suarez G; Motin VL; Chauhan S; Klimpel GR; Peterson JW; Chopra AK
    Infect Immun; 2008 Apr; 76(4):1390-409. PubMed ID: 18227160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yersinia pestis endowed with increased cytotoxicity is avirulent in a bubonic plague model and induces rapid protection against pneumonic plague.
    Zauberman A; Tidhar A; Levy Y; Bar-Haim E; Halperin G; Flashner Y; Cohen S; Shafferman A; Mamroud E
    PLoS One; 2009 Jun; 4(6):e5938. PubMed ID: 19529770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depletion of Glucose Activates Catabolite Repression during Pneumonic Plague.
    Ritzert JT; Lathem WW
    J Bacteriol; 2018 Jun; 200(11):. PubMed ID: 29555700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A plasminogen-activating protease specifically controls the development of primary pneumonic plague.
    Lathem WW; Price PA; Miller VL; Goldman WE
    Science; 2007 Jan; 315(5811):509-13. PubMed ID: 17255510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pneumonic Plague: The Darker Side of Yersinia pestis.
    Pechous RD; Sivaraman V; Stasulli NM; Goldman WE
    Trends Microbiol; 2016 Mar; 24(3):190-197. PubMed ID: 26698952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells.
    Kerschen EJ; Cohen DA; Kaplan AM; Straley SC
    Infect Immun; 2004 Aug; 72(8):4589-602. PubMed ID: 15271919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.