These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 30643131)
1. Quantum absorption refrigerator with trapped ions. Maslennikov G; Ding S; Hablützel R; Gan J; Roulet A; Nimmrichter S; Dai J; Scarani V; Matsukevich D Nat Commun; 2019 Jan; 10(1):202. PubMed ID: 30643131 [TBL] [Abstract][Full Text] [Related]
2. Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement. Brask JB; Brunner N Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062101. PubMed ID: 26764626 [TBL] [Abstract][Full Text] [Related]
3. Quantum refrigerators and the third law of thermodynamics. Levy A; Alicki R; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070 [TBL] [Abstract][Full Text] [Related]
4. Coherence and decoherence in quantum absorption refrigerators. Kilgour M; Segal D Phys Rev E; 2018 Jul; 98(1-1):012117. PubMed ID: 30110858 [TBL] [Abstract][Full Text] [Related]
5. Quantum speed limit constraints on a nanoscale autonomous refrigerator. Mukhopadhyay C; Misra A; Bhattacharya S; Pati AK Phys Rev E; 2018 Jun; 97(6-1):062116. PubMed ID: 30011569 [TBL] [Abstract][Full Text] [Related]
6. Probing coherent quantum thermodynamics using a trapped ion. Onishchenko O; Guarnieri G; Rosillo-Rodes P; Pijn D; Hilder J; Poschinger UG; Perarnau-Llobet M; Eisert J; Schmidt-Kaler F Nat Commun; 2024 Aug; 15(1):6974. PubMed ID: 39143048 [TBL] [Abstract][Full Text] [Related]
7. Classical emulation of quantum-coherent thermal machines. González JO; Palao JP; Alonso D; Correa LA Phys Rev E; 2019 Jun; 99(6-1):062102. PubMed ID: 31330638 [TBL] [Abstract][Full Text] [Related]
11. Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators. Liu J; Segal D Phys Rev E; 2021 Mar; 103(3-1):032138. PubMed ID: 33862758 [TBL] [Abstract][Full Text] [Related]
12. Effects of noise-induced coherence on the fluctuations of current in quantum absorption refrigerators. Holubec V; Novotný T J Chem Phys; 2019 Jul; 151(4):044108. PubMed ID: 31370554 [TBL] [Abstract][Full Text] [Related]
13. Experimental Realization of Self-Contained Quantum Refrigeration. Huang K; Xi C; Long X; Liu H; Fan YA; Wang X; Zheng Y; Feng Y; Nie X; Lu D Phys Rev Lett; 2024 May; 132(21):210403. PubMed ID: 38856252 [TBL] [Abstract][Full Text] [Related]
14. Measurement-Based Quantum Thermal Machines with Feedback Control. Bhandari B; Czupryniak R; Erdman PA; Jordan AN Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832571 [TBL] [Abstract][Full Text] [Related]
15. Performance of quantum Otto refrigerators with squeezing. Long R; Liu W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062137. PubMed ID: 26172691 [TBL] [Abstract][Full Text] [Related]
16. Current fluctuations in quantum absorption refrigerators. Segal D Phys Rev E; 2018 May; 97(5-1):052145. PubMed ID: 29906995 [TBL] [Abstract][Full Text] [Related]
17. Three-qubit refrigerator with two-body interactions. Hewgill A; González JO; Palao JP; Alonso D; Ferraro A; De Chiara G Phys Rev E; 2020 Jan; 101(1-1):012109. PubMed ID: 32069534 [TBL] [Abstract][Full Text] [Related]
18. Entanglement enhances cooling in microscopic quantum refrigerators. Brunner N; Huber M; Linden N; Popescu S; Silva R; Skrzypczyk P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032115. PubMed ID: 24730798 [TBL] [Abstract][Full Text] [Related]
19. Three-terminal quantum-dot refrigerators. Zhang Y; Lin G; Chen J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052118. PubMed ID: 26066130 [TBL] [Abstract][Full Text] [Related]
20. Quantum heat engines and refrigerators: continuous devices. Kosloff R; Levy A Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]