BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30643146)

  • 1. A micro-dispenser for long-term storage and controlled release of liquids.
    Kazemzadeh A; Eriksson A; Madou M; Russom A
    Nat Commun; 2019 Jan; 10(1):189. PubMed ID: 30643146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrifugo-pneumatic multi-liquid aliquoting - parallel aliquoting and combination of multiple liquids in centrifugal microfluidics.
    Schwemmer F; Hutzenlaub T; Buselmeier D; Paust N; von Stetten F; Mark D; Zengerle R; Kosse D
    Lab Chip; 2015 Aug; 15(15):3250-8. PubMed ID: 26138211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lab-on-a-Disc for Point-of-Care Infection Diagnostics.
    Sunkara V; Kumar S; Sabaté Del Río J; Kim I; Cho YK
    Acc Chem Res; 2021 Oct; 54(19):3643-3655. PubMed ID: 34516092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A film-lever actuated switch technology for multifunctional, on-demand, and robust manipulation of liquids.
    Liang C; Yang Z; Jiang H
    Nat Commun; 2022 Aug; 13(1):4902. PubMed ID: 35987906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrifugal microfluidic platforms: advanced unit operations and applications.
    Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquids on-chip: direct storage and release employing micro-perforated vapor barrier films.
    Czurratis D; Beyl Y; Grimm A; Brettschneider T; Zinober S; Lärmer F; Zengerle R
    Lab Chip; 2015 Jul; 15(13):2887-95. PubMed ID: 26038101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvalves for Applications in Centrifugal Microfluidics.
    Peshin S; Madou M; Kulinsky L
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review on pneumatic operations in centrifugal microfluidics.
    Hess JF; Zehnle S; Juelg P; Hutzenlaub T; Zengerle R; Paust N
    Lab Chip; 2019 Nov; 19(22):3745-3770. PubMed ID: 31596297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and opportunities in micro/nanofluidic and lab-on-a-chip.
    Verma N; Pandya A
    Prog Mol Biol Transl Sci; 2022; 186(1):289-302. PubMed ID: 35033289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Siphon-Controlled Automation on a Lab-on-a-Disc Using Event-Triggered Dissolvable Film Valves.
    Henderson BD; Kinahan DJ; Rio J; Mishra R; King D; Torres-Delgado SM; Mager D; Korvink JG; Ducrée J
    Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33800811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Portable and integrated microfluidic flow control system using off-the-shelf components towards organs-on-chip applications.
    Zhu H; Özkayar G; Lötters J; Tichem M; Ghatkesar MK
    Biomed Microdevices; 2023 Jun; 25(2):19. PubMed ID: 37266714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezo- and solenoid valve-based liquid dispensing for miniaturized assays.
    Niles WD; Coassin PJ
    Assay Drug Dev Technol; 2005 Apr; 3(2):189-202. PubMed ID: 15871693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of nucleic acids from blood: unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes.
    Brassard D; Geissler M; Descarreaux M; Tremblay D; Daoud J; Clime L; Mounier M; Charlebois D; Veres T
    Lab Chip; 2019 Jun; 19(11):1941-1952. PubMed ID: 30997461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays.
    Weng KY; Chou NJ; Cheng JW
    Lab Chip; 2008 Jul; 8(7):1216-9. PubMed ID: 18584101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
    Islam MN; Doria SM; Fu X; Gagnon ZR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices.
    Woolf MS; Dignan LM; Lewis HM; Tomley CJ; Nauman AQ; Landers JP
    Lab Chip; 2020 Apr; 20(8):1426-1440. PubMed ID: 32201873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A smartphone controlled handheld microfluidic liquid handling system.
    Li B; Li L; Guan A; Dong Q; Ruan K; Hu R; Li Z
    Lab Chip; 2014 Oct; 14(20):4085-92. PubMed ID: 25182078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics.
    Arango Y; Temiz Y; Gökçe O; Delamarche E
    Sci Adv; 2020 Apr; 6(16):eaay8305. PubMed ID: 32494605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robot-assisted acoustofluidic end effector.
    Durrer J; Agrawal P; Ozgul A; Neuhauss SCF; Nama N; Ahmed D
    Nat Commun; 2022 Oct; 13(1):6370. PubMed ID: 36289227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.