BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

535 related articles for article (PubMed ID: 30643294)

  • 1. Task representations in neural networks trained to perform many cognitive tasks.
    Yang GR; Joglekar MR; Song HF; Newsome WT; Wang XJ
    Nat Neurosci; 2019 Feb; 22(2):297-306. PubMed ID: 30643294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.
    Miconi T
    Elife; 2017 Feb; 6():. PubMed ID: 28230528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hebbian Learning in a Random Network Captures Selectivity Properties of the Prefrontal Cortex.
    Lindsay GW; Rigotti M; Warden MR; Miller EK; Fusi S
    J Neurosci; 2017 Nov; 37(45):11021-11036. PubMed ID: 28986463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges.
    Cohen JD; Braver TS; O'Reilly RC
    Philos Trans R Soc Lond B Biol Sci; 1996 Oct; 351(1346):1515-27. PubMed ID: 8941963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometry of neural computation unifies working memory and planning.
    Ehrlich DB; Murray JD
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2115610119. PubMed ID: 36067286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computing by Robust Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions.
    Chaisangmongkon W; Swaminathan SK; Freedman DJ; Wang XJ
    Neuron; 2017 Mar; 93(6):1504-1517.e4. PubMed ID: 28334612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between neuronal encoding and population dynamics during categorization task switching in parietal cortex.
    Mohan K; Zhu O; Freedman DJ
    Neuron; 2021 Feb; 109(4):700-712.e4. PubMed ID: 33326754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.
    O'Connell MA; Basak C
    Neuropsychologia; 2018 Jun; 114():50-64. PubMed ID: 29655800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex.
    Chadderdon GL; Sporns O
    J Cogn Neurosci; 2006 Feb; 18(2):242-57. PubMed ID: 16494684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory processing and categorization in cortical and deep neural networks.
    Pinotsis DA; Siegel M; Miller EK
    Neuroimage; 2019 Nov; 202():116118. PubMed ID: 31445126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic Dynamics Underlying Cognitive Stability and Flexibility.
    Ueltzhöffer K; Armbruster-Genç DJ; Fiebach CJ
    PLoS Comput Biol; 2015 Jun; 11(6):e1004331. PubMed ID: 26068119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prefrontal cortical plasticity during learning of cognitive tasks.
    Tang H; Riley MR; Singh B; Qi XL; Blake DT; Constantinidis C
    Nat Commun; 2022 Jan; 13(1):90. PubMed ID: 35013248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neuronal model of a global workspace in effortful cognitive tasks.
    Dehaene S; Kerszberg M; Changeux JP
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14529-34. PubMed ID: 9826734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible shaping: how learning in small steps helps.
    Krueger KA; Dayan P
    Cognition; 2009 Mar; 110(3):380-94. PubMed ID: 19121518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From memory-based decisions to decision-based movements: a model of interval discrimination followed by action selection.
    Joshi P
    Neural Netw; 2007 Apr; 20(3):298-311. PubMed ID: 17556113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of new information into prefrontal cortical activity after learning working memory tasks.
    Meyers EM; Qi XL; Constantinidis C
    Proc Natl Acad Sci U S A; 2012 Mar; 109(12):4651-6. PubMed ID: 22392988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Neural Networks for Modeling Visual Perceptual Learning.
    Wenliang LK; Seitz AR
    J Neurosci; 2018 Jul; 38(27):6028-6044. PubMed ID: 29793979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.