These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 30643294)

  • 1. Task representations in neural networks trained to perform many cognitive tasks.
    Yang GR; Joglekar MR; Song HF; Newsome WT; Wang XJ
    Nat Neurosci; 2019 Feb; 22(2):297-306. PubMed ID: 30643294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometry of neural computation unifies working memory and planning.
    Ehrlich DB; Murray JD
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2115610119. PubMed ID: 36067286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.
    Miconi T
    Elife; 2017 Feb; 6():. PubMed ID: 28230528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent neural networks that learn multi-step visual routines with reinforcement learning.
    Mollard S; Wacongne C; Bohte SM; Roelfsema PR
    PLoS Comput Biol; 2024 Apr; 20(4):e1012030. PubMed ID: 38683837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Working Memory and Decision-Making in a Frontoparietal Circuit Model.
    Murray JD; Jaramillo J; Wang XJ
    J Neurosci; 2017 Dec; 37(50):12167-12186. PubMed ID: 29114071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges.
    Cohen JD; Braver TS; O'Reilly RC
    Philos Trans R Soc Lond B Biol Sci; 1996 Oct; 351(1346):1515-27. PubMed ID: 8941963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of Nonlinear Mixed Selectivity in Prefrontal Cortex after Training.
    Dang W; Jaffe RJ; Qi XL; Constantinidis C
    J Neurosci; 2021 Sep; 41(35):7420-7434. PubMed ID: 34301827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between neuronal encoding and population dynamics during categorization task switching in parietal cortex.
    Mohan K; Zhu O; Freedman DJ
    Neuron; 2021 Feb; 109(4):700-712.e4. PubMed ID: 33326754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering recurrent neural networks from task-relevant manifolds and dynamics.
    Pollock E; Jazayeri M
    PLoS Comput Biol; 2020 Aug; 16(8):e1008128. PubMed ID: 32785228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural language instructions induce compositional generalization in networks of neurons.
    Riveland R; Pouget A
    Nat Neurosci; 2024 May; 27(5):988-999. PubMed ID: 38499855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks.
    Li H; Fan Y
    Neuroimage; 2019 Nov; 202():116059. PubMed ID: 31362049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Working Memory Through Selective Gating and Attentional Tagging.
    Kruijne W; Bohte SM; Roelfsema PR; Olivers CNL
    Neural Comput; 2021 Jan; 33(1):1-40. PubMed ID: 33080159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prefrontal cortical plasticity during learning of cognitive tasks.
    Tang H; Riley MR; Singh B; Qi XL; Blake DT; Constantinidis C
    Nat Commun; 2022 Jan; 13(1):90. PubMed ID: 35013248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks.
    Kim R; Sejnowski TJ
    Nat Neurosci; 2021 Jan; 24(1):129-139. PubMed ID: 33288909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From fixed points to chaos: three models of delayed discrimination.
    Barak O; Sussillo D; Romo R; Tsodyks M; Abbott LF
    Prog Neurobiol; 2013 Apr; 103():214-22. PubMed ID: 23438479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pruning recurrent neural networks replicates adolescent changes in working memory and reinforcement learning.
    Averbeck BB
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2121331119. PubMed ID: 35622896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.