These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30643297)

  • 1. Cortical microcircuitry of performance monitoring.
    Sajad A; Godlove DC; Schall JD
    Nat Neurosci; 2019 Feb; 22(2):265-274. PubMed ID: 30643297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional architecture of executive control and associated event-related potentials in macaques.
    Sajad A; Errington SP; Schall JD
    Nat Commun; 2022 Oct; 13(1):6270. PubMed ID: 36271051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Event-related potentials elicited by errors during the stop-signal task. II: human effector-specific error responses.
    Reinhart RM; Carlisle NB; Kang MS; Woodman GF
    J Neurophysiol; 2012 May; 107(10):2794-807. PubMed ID: 22357790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects.
    Kimmig H; Greenlee MW; Gondan M; Schira M; Kassubek J; Mergner T
    Exp Brain Res; 2001 Nov; 141(2):184-94. PubMed ID: 11713630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation of Medial Frontal β-Bursts and Executive Control.
    Errington SP; Woodman GF; Schall JD
    J Neurosci; 2020 Nov; 40(48):9272-9282. PubMed ID: 33097634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance monitoring local field potentials in the medial frontal cortex of primates: supplementary eye field.
    Emeric EE; Leslie M; Pouget P; Schall JD
    J Neurophysiol; 2010 Sep; 104(3):1523-37. PubMed ID: 20660423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Executive control of countermanding saccades by the supplementary eye field.
    Stuphorn V; Schall JD
    Nat Neurosci; 2006 Jul; 9(7):925-31. PubMed ID: 16732274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Neuron Correlates of Error Monitoring and Post-Error Adjustments in Human Medial Frontal Cortex.
    Fu Z; Wu DJ; Ross I; Chung JM; Mamelak AN; Adolphs R; Rutishauser U
    Neuron; 2019 Jan; 101(1):165-177.e5. PubMed ID: 30528064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event-related potentials elicited by errors during the stop-signal task. I. Macaque monkeys.
    Godlove DC; Emeric EE; Segovis CM; Young MS; Schall JD; Woodman GF
    J Neurosci; 2011 Nov; 31(44):15640-9. PubMed ID: 22049407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance monitoring by the anterior cingulate cortex during saccade countermanding.
    Ito S; Stuphorn V; Brown JW; Schall JD
    Science; 2003 Oct; 302(5642):120-2. PubMed ID: 14526085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of human internal globus pallidus in the early modulation of cortical error-related activity.
    Herrojo Ruiz M; Huebl J; Schönecker T; Kupsch A; Yarrow K; Krauss JK; Schneider GH; Kühn AA
    Cereb Cortex; 2014 Jun; 24(6):1502-17. PubMed ID: 23349222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance monitoring by the supplementary eye field.
    Stuphorn V; Taylor TL; Schall JD
    Nature; 2000 Dec; 408(6814):857-60. PubMed ID: 11130724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of pedunculopontine tegmental nucleus neurons to performance of visually guided saccade tasks in monkeys.
    Kobayashi Y; Inoue Y; Yamamoto M; Isa T; Aizawa H
    J Neurophysiol; 2002 Aug; 88(2):715-31. PubMed ID: 12163524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcircuitry of agranular frontal cortex: contrasting laminar connectivity between occipital and frontal areas.
    Ninomiya T; Dougherty K; Godlove DC; Schall JD; Maier A
    J Neurophysiol; 2015 May; 113(9):3242-55. PubMed ID: 25744881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperactivity within an extensive cortical distribution associated with excessive sensitivity in error processing in unmedicated depression: a combined event-related potential and sLORETA study.
    Tang Y; Zhang X; Simmonite M; Li H; Zhang T; Guo Q; Li C; Fang Y; Xu Y; Wang J
    Int J Psychophysiol; 2013 Nov; 90(2):282-9. PubMed ID: 24056021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conflict monitoring and error processing: new insights from simultaneous EEG-fMRI.
    Iannaccone R; Hauser TU; Staempfli P; Walitza S; Brandeis D; Brem S
    Neuroimage; 2015 Jan; 105():395-407. PubMed ID: 25462691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Losing the error related negativity in the EEG of human subjects: an indicator for willed action.
    Stemmer B; Witzke W; Schönle PW
    Neurosci Lett; 2001 Jul; 308(1):60-2. PubMed ID: 11445286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Timing and magnitude of frontal activity differentiates refixation and anti-saccade performance.
    Clementz BA; McDowell JE; Stewart SE
    Neuroreport; 2001 Jul; 12(9):1863-8. PubMed ID: 11435913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task.
    Ipata AE; Gee AL; Goldberg ME; Bisley JW
    J Neurosci; 2006 Apr; 26(14):3656-61. PubMed ID: 16597719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.