BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 30643716)

  • 1. Jammed Microgel Inks for 3D Printing Applications.
    Highley CB; Song KH; Daly AC; Burdick JA
    Adv Sci (Weinh); 2019 Jan; 6(1):1801076. PubMed ID: 30643716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jammed Microgel-Based Inks for 3D Printing of Complex Structures Transformable via pH/Temperature Variations.
    Moon D; Lee MG; Sun JY; Song KH; Doh J
    Macromol Rapid Commun; 2022 Oct; 43(19):e2200271. PubMed ID: 35686322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragmenting Bulk Hydrogels and Processing into Granular Hydrogels for Biomedical Applications.
    Muir VG; Prendergast ME; Burdick JA
    J Vis Exp; 2022 May; (183):. PubMed ID: 35662235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing of Microgel Scaffolds with Tunable Void Fraction to Promote Cell Infiltration.
    Seymour AJ; Shin S; Heilshorn SC
    Adv Healthc Mater; 2021 Sep; 10(18):e2100644. PubMed ID: 34342179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embedded Printing of Hydrogels and Watery Suspensions of Cells in Patterned Granular Baths.
    Trikalitis VD; Perea Paizal J; Rangel V; Stein F; Rouwkema J
    Tissue Eng Part C Methods; 2024 May; 30(5):206-216. PubMed ID: 38568935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip fabrication and in-flow 3D-printing of microgel constructs: from chip to scaffold materials in one integral process.
    Reineke B; Paulus I; Löffelsend S; Yu CH; Vinogradov D; Meyer A; Hazur J; Röder J; Vollmer M; Tamgüney G; Hauschild S; Boccaccini AR; Groll J; Förster S
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38471160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jammed microgel growth medium prepared by flash-solidification of agarose for 3D cell culture and 3D bioprinting.
    Sreepadmanabh M; Ganesh M; Bhat R; Bhattacharjee T
    Biomed Mater; 2023 May; 18(4):. PubMed ID: 37146614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks.
    Flégeau K; Puiggali-Jou A; Zenobi-Wong M
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35483326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamically crosslinked thermoresponsive granular hydrogels.
    Lee HP; Cai KX; Wang TC; Davis R; Deo K; Singh KA; Lele TP; Gaharwar AK
    J Biomed Mater Res A; 2023 Oct; 111(10):1577-1587. PubMed ID: 37199446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing microporous scaffolds from modular bioinks containing sacrificial, cell-encapsulating microgels.
    Seymour AJ; Kilian D; Navarro RS; Hull SM; Heilshorn SC
    Biomater Sci; 2023 Nov; 11(23):7598-7615. PubMed ID: 37824082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jammed Polyelectrolyte Microgels for 3D Cell Culture Applications: Rheological Behavior with Added Salts.
    O'Bryan CS; Kabb CP; Sumerlin BS; Angelini TE
    ACS Appl Bio Mater; 2019 Apr; 2(4):1509-1517. PubMed ID: 35026924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jammed Microgels in Deep Eutectic Solvents as a Green and Low-Cost Ink for 3D Printing of Reliable Auxetic Strain Sensors.
    Vo TH; Lam PK; Sheng YJ; Tsao HK
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):33109-33118. PubMed ID: 37382914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cation-crosslinked
    Zhang H; Luo Y; Hu Z; Chen M; Chen S; Yao Y; Yao J; Shao X; Wu K; Zhu Y; Fu J
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38198708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embedded 3D Bioprinting of Collagen Inks into Microgel Baths to Control Hydrogel Microstructure and Cell Spreading.
    Brunel LG; Christakopoulos F; Kilian D; Cai B; Hull SM; Myung D; Heilshorn SC
    Adv Healthc Mater; 2023 Dec; ():e2303325. PubMed ID: 38134346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.
    Ouyang L; Highley CB; Rodell CB; Sun W; Burdick JA
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1743-1751. PubMed ID: 33440472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink.
    Song K; Ren B; Zhai Y; Chai W; Huang Y
    Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34823234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.