These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 306440)

  • 41. Calcium transients and calcium binding to troponin at the contraction threshold in skeletal muscle.
    Kovács L; Szücs G; Csernoch L
    Biophys J; 1987 Apr; 51(4):521-6. PubMed ID: 3495298
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Factors affecting the appearance of the hump charge movement component in frog cut twitch fibers.
    Hui CS
    J Gen Physiol; 1991 Aug; 98(2):315-47. PubMed ID: 1658193
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Local activation of frog muscle fibres with linearly rising currents.
    Sugi H
    J Physiol; 1968 Dec; 199(3):549-67. PubMed ID: 5710422
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for the non-existence of a negative phase in the hump charge movement component (I gamma) in Rana temporaria.
    Hui CS; Chen W
    J Physiol; 1994 Jan; 474(2):275-82. PubMed ID: 8006814
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanical activation and voltage-dependent charge movement in stretched muscle fibres.
    Hui CS; Gilly WF
    Nature; 1979 Sep; 281(5728):223-5. PubMed ID: 314595
    [No Abstract]   [Full Text] [Related]  

  • 46. Appropriate conditions to record activation of fast Ca2+ channels in frog skeletal muscle (Rana pipiens).
    García J; Stefani E
    Pflugers Arch; 1987 May; 408(6):646-8. PubMed ID: 2439988
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The origin of the instantaneous elasticity in single frog muscle fibres.
    Sugi H; Tameyasu T
    Experientia; 1979 Feb; 35(2):227-8. PubMed ID: 421840
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficacy of the two-microelectrode voltage clamp technique in crayfish muscle.
    Finger W; Stettmeier H
    Pflugers Arch; 1980 Sep; 387(2):133-41. PubMed ID: 7191977
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Birefringence signals from surface and t-system membranes of frog single muscle fibres.
    Baylor SM; Oetliker H
    J Physiol; 1977 Jan; 264(1):199-213. PubMed ID: 300108
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An improved double vaseline gap voltage clamp to study electroporated skeletal muscle fibers.
    Chen W; Lee RC
    Biophys J; 1994 Mar; 66(3 Pt 1):700-9. PubMed ID: 8011901
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The optical properties of birefringence signals from single muscle fibres.
    Baylor SM; Oetliker H
    J Physiol; 1977 Jan; 264(1):163-98. PubMed ID: 300107
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stepwise shortening of muscle fibre segments.
    Granzier HL; Myers JA; Pollack GH
    J Muscle Res Cell Motil; 1987 Jun; 8(3):242-51. PubMed ID: 3497174
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Potentiometric measurement of membrane action potentials in frog muscle fibres.
    Frankenhaeuser B; Lindley BD; Smith RS
    J Physiol; 1966 Mar; 183(1):152-66. PubMed ID: 5945246
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extensional wave-propagation characteristics in striated muscle.
    Truong XT
    J Acoust Soc Am; 1972 Apr; 51(4):1352-6. PubMed ID: 4537507
    [No Abstract]   [Full Text] [Related]  

  • 55. A mathematical model of heterogeneous behavior of single muscle fibres.
    Colli P
    J Math Biol; 1986; 24(1):103-18. PubMed ID: 3723027
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The membrane capacity of frog twitch and slow muscle fibres.
    Adrian RH; Peachey LD
    J Physiol; 1965 Nov; 181(2):324-36. PubMed ID: 5866495
    [No Abstract]   [Full Text] [Related]  

  • 57. The organization of the inter-fibre space in the striated muscle of the toad, and the alignment of striations of neighbouring fibres.
    Hill DK
    J Physiol; 1965 Jul; 179(2):368-84. PubMed ID: 5322820
    [No Abstract]   [Full Text] [Related]  

  • 58. Degeneration of insect intersegmental muscles: electrophysiological studies of populations of fibres.
    Lockshin RA
    J Insect Physiol; 1973 Dec; 19(12):2359-72. PubMed ID: 4761354
    [No Abstract]   [Full Text] [Related]  

  • 59. The excitation-contraction coupling mechanism in skeletal muscle.
    Calderón JC; Bolaños P; Caputo C
    Biophys Rev; 2014 Mar; 6(1):133-160. PubMed ID: 28509964
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Voltage clamp methods for the study of membrane currents and SR Ca(2+) release in adult skeletal muscle fibres.
    Hernández-Ochoa EO; Schneider MF
    Prog Biophys Mol Biol; 2012 Apr; 108(3):98-118. PubMed ID: 22306655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.