BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30644065)

  • 1. A Model of [Formula: see text] Dynamics in an Accurate Reconstruction of Parotid Acinar Cells.
    Pages N; Vera-Sigüenza E; Rugis J; Kirk V; Yule DI; Sneyd J
    Bull Math Biol; 2019 May; 81(5):1394-1426. PubMed ID: 30644065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mathematical Model of Fluid Transport in an Accurate Reconstruction of Parotid Acinar Cells.
    Vera-Sigüenza E; Pages N; Rugis J; Yule DI; Sneyd J
    Bull Math Biol; 2019 Mar; 81(3):699-721. PubMed ID: 30484039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multicellular Model of Primary Saliva Secretion in the Parotid Gland.
    Vera-Sigüenza E; Pages N; Rugis J; Yule DI; Sneyd J
    Bull Math Biol; 2020 Mar; 82(3):38. PubMed ID: 32162119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Mathematical Model Supports a Key Role for Ae4 (Slc4a9) in Salivary Gland Secretion.
    Vera-Sigüenza E; Catalán MA; Peña-Münzenmayer G; Melvin JE; Sneyd J
    Bull Math Biol; 2018 Feb; 80(2):255-282. PubMed ID: 29209914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling calcium waves in an anatomically accurate three-dimensional parotid acinar cell.
    Sneyd J; Means S; Zhu D; Rugis J; Won JH; Yule DI
    J Theor Biol; 2017 Apr; 419():383-393. PubMed ID: 27155044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homer2 protein regulates plasma membrane Ca²⁺-ATPase-mediated Ca²⁺ signaling in mouse parotid gland acinar cells.
    Yang YM; Lee J; Jo H; Park S; Chang I; Muallem S; Shin DM
    J Biol Chem; 2014 Sep; 289(36):24971-9. PubMed ID: 25049230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New saliva secretion model based on the expression of Na
    Almássy J; Siguenza E; Skaliczki M; Matesz K; Sneyd J; Yule DI; Nánási PP
    Pflugers Arch; 2018 Apr; 470(4):613-621. PubMed ID: 29344775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Ca²⁺ release through inositol 1,4,5-trisphosphate receptors by adenine nucleotides in parotid acinar cells.
    Park HS; Betzenhauser MJ; Zhang Y; Yule DI
    Am J Physiol Gastrointest Liver Physiol; 2012 Jan; 302(1):G97-G104. PubMed ID: 21960523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of the apical plasma membrane Ca(2+) -ATPase by protein kinase A in parotid acinar cells.
    Baggaley E; McLarnon S; Demeter I; Varga G; Bruce JI
    J Biol Chem; 2007 Dec; 282(52):37678-93. PubMed ID: 17938178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of fluid secretion from a parotid acinar cell.
    Gin E; Crampin EJ; Brown DA; Shuttleworth TJ; Yule DI; Sneyd J
    J Theor Biol; 2007 Sep; 248(1):64-80. PubMed ID: 17559884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen sulfide: a novel gaseous signaling molecule and intracellular Ca2+ regulator in rat parotid acinar cells.
    Moustafa A; Habara Y
    Am J Physiol Cell Physiol; 2015 Oct; 309(7):C480-90. PubMed ID: 26224578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the transition from simple to complex Ca²⁺ oscillations in pancreatic acinar cells.
    Manhas N; Sneyd J; Pardasani KR
    J Biosci; 2014 Jun; 39(3):463-84. PubMed ID: 24845510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytosolic Ca(2+) and Ca(2+)-activated Cl(-) current dynamics: insights from two functionally distinct mouse exocrine cells.
    Giovannucci DR; Bruce JI; Straub SV; Arreola J; Sneyd J; Shuttleworth TJ; Yule DI
    J Physiol; 2002 Apr; 540(Pt 2):469-84. PubMed ID: 11956337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deterministic model predicts the properties of stochastic calcium oscillations in airway smooth muscle cells.
    Cao P; Tan X; Donovan G; Sanderson MJ; Sneyd J
    PLoS Comput Biol; 2014 Aug; 10(8):e1003783. PubMed ID: 25121766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of inositol 1,4,5-trisphosphate receptors in parotid acinar cells. A mechanism for the synergistic effects of cAMP on Ca2+ signaling.
    Bruce JI; Shuttleworth TJ; Giovannucci DR; Yule DI
    J Biol Chem; 2002 Jan; 277(2):1340-8. PubMed ID: 11694504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cAMP potentiates ATP-evoked calcium signaling in human parotid acinar cells.
    Brown DA; Bruce JI; Straub SV; Yule DI
    J Biol Chem; 2004 Sep; 279(38):39485-94. PubMed ID: 15262999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium oscillations and waves generated by multiple release mechanisms in pancreatic acinar cells.
    Ventura AC; Sneyd J
    Bull Math Biol; 2006 Nov; 68(8):2205-31. PubMed ID: 17086495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that zymogen granules do not function as an intracellular Ca2+ store for the generation of the Ca2+ signal in rat parotid acinar cells.
    Nezu A; Tanimura A; Morita T; Irie K; Yajima T; Tojyo Y
    Biochem J; 2002 Apr; 363(Pt 1):59-66. PubMed ID: 11903047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of expression of Ca2+ signaling proteins and adaptation of Ca2+ signaling in SERCA2+/- mouse parotid acini.
    Choi JH; Jo H; Hong JH; Lee SI; Shin DM
    Yonsei Med J; 2008 Apr; 49(2):311-21. PubMed ID: 18452270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational model of the [Formula: see text] transients and influence of buffering in guinea pig urinary bladder smooth muscle cells.
    Dave V; Manchanda R
    J Bioinform Comput Biol; 2017 Jun; 15(3):1750011. PubMed ID: 28506097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.