These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30644167)

  • 1. Kinetic Competition between Water-Splitting and Photocorrosion Reactions in Photoelectrochemical Devices.
    Nandjou F; Haussener S
    ChemSusChem; 2019 May; 12(9):1984-1994. PubMed ID: 30644167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the Photostability of Solar Water-Splitting Devices and Stabilization Strategies.
    Nandjou F; Haussener S
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43095-43108. PubMed ID: 36122305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocorrosion of WO
    Knöppel J; Kormányos A; Mayerhöfer B; Hofer A; Bierling M; Bachmann J; Thiele S; Cherevko S
    ACS Phys Chem Au; 2021 Nov; 1(1):6-13. PubMed ID: 36855660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting.
    Liu G; Shi J; Zhang F; Chen Z; Han J; Ding C; Chen S; Wang Z; Han H; Li C
    Angew Chem Int Ed Engl; 2014 Jul; 53(28):7295-9. PubMed ID: 24890044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.
    Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW
    Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Al
    Cheng Q; Benipal MK; Liu Q; Wang X; Crozier PA; Chan CK; Nemanich RJ
    ACS Appl Mater Interfaces; 2017 May; 9(19):16138-16147. PubMed ID: 28441470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Level Alignment as Descriptor for Semiconductor/Catalyst Systems in Water Splitting: The Case of Hematite/Cobalt Hexacyanoferrate Photoanodes.
    Hegner FS; Cardenas-Morcoso D; Giménez S; López N; Galan-Mascaros JR
    ChemSusChem; 2017 Nov; 10(22):4552-4560. PubMed ID: 28967707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphonic Acid Modification of GaInP2 Photocathodes Toward Unbiased Photoelectrochemical Water Splitting.
    MacLeod BA; Steirer KX; Young JL; Koldemir U; Sellinger A; Turner JA; Deutsch TG; Olson DC
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11346-50. PubMed ID: 25970795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Draped Semiconductors for Enhanced Photocorrosion Resistance and Photocatalytic Properties.
    Wang M; Cai L; Wang Y; Zhou F; Xu K; Tao X; Chai Y
    J Am Chem Soc; 2017 Mar; 139(11):4144-4151. PubMed ID: 28234009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN.
    Deutsch TG; Koval CA; Turner JA
    J Phys Chem B; 2006 Dec; 110(50):25297-307. PubMed ID: 17165975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives.
    Peter LM; Upul Wijayantha KG
    Chemphyschem; 2014 Jul; 15(10):1983-95. PubMed ID: 24819303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocorrosion at Irradiated Perovskite/Electrolyte Interfaces.
    Samu GF; Janáky C
    J Am Chem Soc; 2020 Dec; 142(52):21595-21614. PubMed ID: 33337148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite.
    Mayer MT; Lin Y; Yuan G; Wang D
    Acc Chem Res; 2013 Jul; 46(7):1558-66. PubMed ID: 23425045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in the Surface Modification of Photoelectrodes toward Efficient and Stable Overall Water Splitting.
    Kaneko H; Minegishi T; Domen K
    Chemistry; 2018 Apr; 24(22):5697-5706. PubMed ID: 29057534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrochemical water oxidation by screen printed ZnO nanoparticle films: effect of pH on catalytic activity and stability.
    Fekete M; Riedel W; Patti AF; Spiccia L
    Nanoscale; 2014 Jul; 6(13):7585-93. PubMed ID: 24892303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocorrosion of ZnO Single Crystals during Electrochemical Water Splitting.
    Dworschak D; Brunnhofer C; Valtiner M
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51530-51536. PubMed ID: 33166115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectrochemical Water Splitting with p-Type Metal Oxide Semiconductor Photocathodes.
    Jang YJ; Lee JS
    ChemSusChem; 2019 May; 12(9):1835-1845. PubMed ID: 30614648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.