BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30644420)

  • 1. Identification of wheat stress-responding genes and TaPR-1-1 function by screening a cDNA yeast library prepared following abiotic stress.
    Wang J; Mao X; Wang R; Li A; Zhao G; Zhao J; Jing R
    Sci Rep; 2019 Jan; 9(1):141. PubMed ID: 30644420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning and characterization of two novel genes from hexaploid wheat that encode double PR-1 domains coupled with a receptor-like protein kinase.
    Lu S; Faris JD; Edwards MC
    Mol Genet Genomics; 2017 Apr; 292(2):435-452. PubMed ID: 28120099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TaPUB1, a Putative E3 Ligase Gene from Wheat, Enhances Salt Stress Tolerance in Transgenic Nicotiana benthamiana.
    Zhang M; Zhang GQ; Kang HH; Zhou SM; Wang W
    Plant Cell Physiol; 2017 Oct; 58(10):1673-1688. PubMed ID: 29016965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic exploration of high-temperature stress-responsive genes in potato using large-scale yeast functional screening.
    Gangadhar BH; Yu JW; Sajeesh K; Park SW
    Mol Genet Genomics; 2014 Apr; 289(2):185-201. PubMed ID: 24357347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat.
    Xu ZS; Ni ZY; Liu L; Nie LN; Li LC; Chen M; Ma YZ
    Mol Genet Genomics; 2008 Dec; 280(6):497-508. PubMed ID: 18800227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.
    Kim EY; Seo YS; Park KY; Kim SJ; Kim WT
    Gene; 2014 Nov; 552(1):146-54. PubMed ID: 25234727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas.
    Eswaran N; Parameswaran S; Sathram B; Anantharaman B; Kumar G RK; Tangirala SJ
    BMC Biotechnol; 2010 Mar; 10():23. PubMed ID: 20302659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel durum wheat genes up-regulated in response to a combination of heat and drought stress.
    Rampino P; Mita G; Fasano P; Borrelli GM; Aprile A; Dalessandro G; De Bellis L; Perrotta C
    Plant Physiol Biochem; 2012 Jul; 56():72-8. PubMed ID: 22609457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat (Triticum aestivum L).
    Fei Y; Xue Y; Du P; Yang S; Deng X
    Protoplasma; 2017 Mar; 254(2):987-996. PubMed ID: 27488925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization and genomic mapping of the pathogenesis-related protein 1 (PR-1) gene family in hexaploid wheat (Triticum aestivum L.).
    Lu S; Friesen TL; Faris JD
    Mol Genet Genomics; 2011 Jun; 285(6):485-503. PubMed ID: 21516334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants.
    Niu CF; Wei W; Zhou QY; Tian AG; Hao YJ; Zhang WK; Ma B; Lin Q; Zhang ZB; Zhang JS; Chen SY
    Plant Cell Environ; 2012 Jun; 35(6):1156-70. PubMed ID: 22220579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System.
    Yu G; Li J; Sun X; Liu Y; Wang X; Zhang H; Pan H
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29149055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of multiple abiotic stress tolerance genes in wheat.
    Kumar R; Masthigowda MH; Kaur A; Bhusal N; Pandey A; Kumar S; Mishra C; Singh G; Singh GP
    Mol Biol Rep; 2020 Nov; 47(11):8629-8643. PubMed ID: 33068231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of TaDi19A, a salt-responsive gene in wheat.
    Li S; Xu C; Yang Y; Xia G
    Plant Cell Environ; 2010 Jan; 33(1):117-29. PubMed ID: 19895399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1L by repressor motif modification.
    Amalraj A; Luang S; Kumar MY; Sornaraj P; Eini O; Kovalchuk N; Bazanova N; Li Y; Yang N; Eliby S; Langridge P; Hrmova M; Lopato S
    Plant Biotechnol J; 2016 Feb; 14(2):820-32. PubMed ID: 26150199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis.
    Huang Q; Wang Y; Li B; Chang J; Chen M; Li K; Yang G; He G
    BMC Plant Biol; 2015 Nov; 15():268. PubMed ID: 26536863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of wheat MYB genes responsive to high temperatures.
    Zhao Y; Tian X; Wang F; Zhang L; Xin M; Hu Z; Yao Y; Ni Z; Sun Q; Peng H
    BMC Plant Biol; 2017 Nov; 17(1):208. PubMed ID: 29157199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L.
    Duan S; Liu B; Zhang Y; Li G; Guo X
    BMC Genomics; 2019 Apr; 20(1):257. PubMed ID: 30935363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis.
    Chen J; Wei B; Li G; Fan R; Zhong Y; Wang X; Zhang X
    Planta; 2015 Jul; 242(1):137-51. PubMed ID: 25893867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.