These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30644473)

  • 21. An Experimental Study of a Zeolite Membrane Reactor for Reverse Water Gas Shift.
    Sakai M; Tanaka K; Matsukata M
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conversion of microalgae to jet fuel: process design and simulation.
    Wang HY; Bluck D; Van Wie BJ
    Bioresour Technol; 2014 Sep; 167():349-57. PubMed ID: 24997379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance, Efficiency, and Flexibility Analysis of a High-Temperature Proton Exchange Membrane Fuel Cell-Based Micro-Combined Heat-and-Power System with Intensification of the Steam Methane Reforming Step by Using a Millistructured Reactor.
    Wu D; Commenge JM; Fort E; Hardy C; Pecquery J; Falk L
    ACS Omega; 2023 Jun; 8(23):20589-20610. PubMed ID: 37323395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane.
    Ha KS; Bae JW; Woo KJ; Jun KW
    Environ Sci Technol; 2010 Feb; 44(4):1412-7. PubMed ID: 20078033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of CVD Silica Membranes Having High Hydrogen Permeance and Steam Durability and a Membrane Reactor for a Water Gas Shift Reaction.
    Nishida R; Tago T; Saitoh T; Seshimo M; Nakao SI
    Membranes (Basel); 2019 Oct; 9(11):. PubMed ID: 31671562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward Minimal Complexity Models of Membrane Reactors for Hydrogen Production.
    Murmura MA; Cerbelli S; Manozzi L; Annesini MC
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36363670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ce K edge XAS of ceria-based redox materials under realistic conditions for the two-step solar thermochemical dissociation of water and/or CO2.
    Rothensteiner M; Sala S; Bonk A; Vogt U; Emerich H; van Bokhoven JA
    Phys Chem Chem Phys; 2015 Oct; 17(40):26988-96. PubMed ID: 26412705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous biogas production from fodder beet silage as sole substrate.
    Scherer PA; Dobler S; Rohardt S; Loock R; Büttner B; Nöldeke P; Brettschuh A
    Water Sci Technol; 2003; 48(4):229-33. PubMed ID: 14531447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A horizontal flow biofilm reactor (HFBR) technology for the removal of methane and hydrogen sulphide at low temperatures.
    Kennelly C; Clifford E; Gerrity S; Walsh R; Rodgers M; Collins G
    Water Sci Technol; 2012; 66(9):1997-2006. PubMed ID: 22925875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications of Thermochemical Modeling in Molten Salt Reactors.
    Besmann TM; Schorne-Pinto J; Aziziha M; Mofrad AM; Booth RE; Yingling JA; Paz Soldan Palma J; Dixon CM; Wilson JA; Hartanto D
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of different dielectric barrier discharge plasma configurations as an alternative technology for green C1 chemistry in the carbon dioxide reforming of methane and the direct decomposition of methanol.
    Rico VJ; Hueso JL; Cotrino J; González-Elipe AR
    J Phys Chem A; 2010 Mar; 114(11):4009-16. PubMed ID: 20184329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-step hydrogen production from NH
    Clark D; Malerød-Fjeld H; Budd M; Yuste-Tirados I; Beeaff D; Aamodt S; Nguyen K; Ansaloni L; Peters T; Vestre PK; Pappas DK; Valls MI; Remiro-Buenamañana S; Norby T; Bjørheim TS; Serra JM; Kjølseth C
    Science; 2022 Apr; 376(6591):390-393. PubMed ID: 35446633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalysis in high-temperature fuel cells.
    Föger K; Ahmed K
    J Phys Chem B; 2005 Feb; 109(6):2149-54. PubMed ID: 16851206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic evaluation of solar assisted ZnO/Zn thermochemical CO
    Bhosale RR; Gupta RB; Shende RV
    Environ Res; 2022 Sep; 212(Pt B):113266. PubMed ID: 35405130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CO₂ Conversion by Membrane Reactors.
    Brunetti A; Fontananova E
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3124-3134. PubMed ID: 30744736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental evaluation of two different types of reactors for CO
    Lombardi L; Carnevale EA; Pecorini I
    Waste Manag; 2016 Dec; 58():287-298. PubMed ID: 27693482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-temperature isothermal chemical cycling for solar-driven fuel production.
    Hao Y; Yang CK; Haile SM
    Phys Chem Chem Phys; 2013 Oct; 15(40):17084-92. PubMed ID: 24002380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Moving bed reactor setup to study complex gas-solid reactions.
    Gupta P; Velazquez-Vargas LG; Valentine C; Fan LS
    Rev Sci Instrum; 2007 Aug; 78(8):085106. PubMed ID: 17764354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.