These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30644495)

  • 1. Pressure responsive gating in nanochannels coated by semiflexible polymer brushes.
    Speyer K; Pastorino C
    Soft Matter; 2019 Jan; 15(5):937-946. PubMed ID: 30644495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brushes of semiflexible polymers in equilibrium and under flow in a super-hydrophobic regime.
    Speyer K; Pastorino C
    Soft Matter; 2015 Jul; 11(27):5473-84. PubMed ID: 26061866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet Transport in a Nanochannel Coated by Hydrophobic Semiflexible Polymer Brushes: The Effect of Chain Stiffness.
    Speyer K; Pastorino C
    Langmuir; 2017 Oct; 33(40):10753-10763. PubMed ID: 28892398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid and Droplet Transport in Brush-Coated Cylindrical Nanochannels: Brush-Assisted Droplet Formation.
    Pastorino C; Müller M
    J Phys Chem B; 2021 Jan; 125(1):442-449. PubMed ID: 33400523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres.
    Deng M; Li X; Liang H; Caswell B; Karniadakis GE
    J Fluid Mech; 2012 Nov; 711():. PubMed ID: 24353347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroosmotic Flow in Mixed Polymer Brush-Grafted Nanochannels.
    Cao Q; You H
    Polymers (Basel); 2016 Dec; 8(12):. PubMed ID: 30974715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tribological Behavior of Grafted Nanoparticle on Polymer-Brushed Walls: A Dissipative Particle Dynamics Study.
    Nguyen VP; Phi PQ; Choi ST
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11988-11998. PubMed ID: 30821436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Chain Stiffness, Grafting Density and Normal Load on the Tribological and Structural Behavior of Polymer Brushes: A Nonequilibrium-Molecular-Dynamics Study.
    Singh MK; Ilg P; Espinosa-Marzal RM; Spencer ND; Kröger M
    Polymers (Basel); 2016 Jul; 8(7):. PubMed ID: 30974530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiflexible polymers grafted to a solid planar substrate: changing the structure from polymer brush to "polymer bristle".
    Milchev A; Binder K
    J Chem Phys; 2012 May; 136(19):194901. PubMed ID: 22612110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Polymer-Brush-Based Nanovalve Controlled by Nanoparticle Additives: Design Principles.
    Coalson RD; Eskandari Nasrabad A; Jasnow D; Zilman A
    J Phys Chem B; 2015 Sep; 119(35):11858-66. PubMed ID: 26222480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoscale simulations of the behavior of charged polymer brushes under normal compression and lateral shear forces.
    Sirchabesan M; Giasson S
    Langmuir; 2007 Sep; 23(19):9713-21. PubMed ID: 17696369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compression of high grafting density opposing polymer brushes using molecular dynamics simulations in explicit solvent.
    Elliott IG; Kuhl TL; Faller R
    J Phys Chem B; 2013 Apr; 117(15):4134-41. PubMed ID: 23517014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow and aggregation of rod-like proteins in slit and cylindrical pores coated with polymer brushes: an insight from dissipative particle dynamics.
    Posel Z; Svoboda M; Colina CM; Lísal M
    Soft Matter; 2017 Feb; 13(8):1634-1645. PubMed ID: 28133676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between polymer brush-coated spherical nanoparticles: the good solvent case.
    Lo Verso F; Yelash L; Egorov SA; Binder K
    J Chem Phys; 2011 Dec; 135(21):214902. PubMed ID: 22149812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoinclusions in polymer brushes with explicit solvent--a molecular dynamics investigation.
    Yaneva J; Dimitrov DI; Milchev A; Binder K
    J Colloid Interface Sci; 2009 Aug; 336(1):51-8. PubMed ID: 19433328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Transport of Flexible Polymers in Slit and Cylindrical Pores Coated with Polymer Brushes: Insight from Dissipative Particle Dynamics.
    Posel Z; Svoboda M; Lísal M
    J Nanosci Nanotechnol; 2019 May; 19(5):2943-2949. PubMed ID: 30501804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer brushes in solvents of variable quality: molecular dynamics simulations using explicit solvent.
    Dimitrov DI; Milchev A; Binder K
    J Chem Phys; 2007 Aug; 127(8):084905. PubMed ID: 17764292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical gating with nanostructured responsive polymer brushes: mixed brush versus homopolymer brush.
    Motornov M; Sheparovych R; Katz E; Minko S
    ACS Nano; 2008 Jan; 2(1):41-52. PubMed ID: 19206546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of polyelectrolyte brushes: from single chains to bundles of chains.
    Sandberg DJ; Carrillo JM; Dobrynin AV
    Langmuir; 2007 Dec; 23(25):12716-28. PubMed ID: 17973411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat flow through a liquid-vapor interface in a nano-channel: the effect of end-grafting polymers on a wall.
    Pastorino C; Urrutia I; Fiora M; Condado F
    J Phys Condens Matter; 2022 Jun; 34(34):. PubMed ID: 35688142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.