These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 30644496)

  • 1. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development.
    Shang M; Soon RH; Lim CT; Khoo BL; Han J
    Lab Chip; 2019 Jan; 19(3):369-386. PubMed ID: 30644496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models.
    Virumbrales-Muñoz M; Ayuso JM; Olave M; Monge R; de Miguel D; Martínez-Lostao L; Le Gac S; Doblare M; Ochoa I; Fernandez LJ
    Sci Rep; 2017 Sep; 7(1):11998. PubMed ID: 28931839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery.
    Agarwal P; Wang H; Sun M; Xu J; Zhao S; Liu Z; Gooch KJ; Zhao Y; Lu X; He X
    ACS Nano; 2017 Jul; 11(7):6691-6702. PubMed ID: 28614653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy.
    Pradhan S; Smith AM; Garson CJ; Hassani I; Seeto WJ; Pant K; Arnold RD; Prabhakarpandian B; Lipke EA
    Sci Rep; 2018 Feb; 8(1):3171. PubMed ID: 29453454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment.
    Bai J; Tu TY; Kim C; Thiery JP; Kamm RD
    Oncotarget; 2015 Nov; 6(34):36603-14. PubMed ID: 26474384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional culture models to study drug resistance in breast cancer.
    Fisher MF; Rao SS
    Biotechnol Bioeng; 2020 Jul; 117(7):2262-2278. PubMed ID: 32297971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput analysis of cell-cell crosstalk in ad hoc designed microfluidic chips for oncoimmunology applications.
    Mencattini A; De Ninno A; Mancini J; Businaro L; Martinelli E; Schiavoni G; Mattei F
    Methods Enzymol; 2020; 632():479-502. PubMed ID: 32000911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathophysiologically relevant in vitro tumor models for drug screening.
    Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M
    Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening.
    Brooks A; Zhang Y; Chen J; Zhao CX
    Adv Healthc Mater; 2024 Aug; 13(21):e2302436. PubMed ID: 38224141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug testing of monodisperse arrays of live microdissected tumors using a valved multiwell microfluidic platform.
    Lockhart EJ; Horowitz LF; Rodríguez A; Zhu S; Nguyen T; Mehrabi M; Gujral TS; Folch A
    Lab Chip; 2024 May; 24(10):2683-2699. PubMed ID: 38651213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of tumor chip technology.
    Hachey SJ; Hughes CCW
    Lab Chip; 2018 Sep; 18(19):2893-2912. PubMed ID: 30156248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip.
    Lei KF; Wu MH; Hsu CW; Chen YD
    Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DLM-GelMA/tumor slice sandwich structured tumor on a chip for drug efficacy testing.
    Hu W; Bei HP; Jiang H; Wu D; Yu X; Zhou X; Sun Q; Lu Q; Du Q; Wang L; Luo Z; Wu G; Zhao X; Wang S
    Lab Chip; 2024 Jul; 24(15):3718-3727. PubMed ID: 38953554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment.
    Niu Y; Bai J; Kamm RD; Wang Y; Wang C
    Mol Pharm; 2014 Jul; 11(7):2022-9. PubMed ID: 24533867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids.
    Shirure VS; Bi Y; Curtis MB; Lezia A; Goedegebuure MM; Goedegebuure SP; Aft R; Fields RC; George SC
    Lab Chip; 2018 Dec; 18(23):3687-3702. PubMed ID: 30393802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mimicking Tumors: Toward More Predictive In Vitro Models for Peptide- and Protein-Conjugated Drugs.
    van den Brand D; Massuger LF; Brock R; Verdurmen WP
    Bioconjug Chem; 2017 Mar; 28(3):846-856. PubMed ID: 28122451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D modeling in cancer studies.
    Atat OE; Farzaneh Z; Pourhamzeh M; Taki F; Abi-Habib R; Vosough M; El-Sibai M
    Hum Cell; 2022 Jan; 35(1):23-36. PubMed ID: 34761350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing characteristics of cancer cells cultured on engineered platforms simulating different microenvironments.
    Jo Y; Choi N; Kim HN; Choi J
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):1170-1179. PubMed ID: 29519165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip.
    Han B; Qu C; Park K; Konieczny SF; Korc M
    Cancer Lett; 2016 Sep; 380(1):319-29. PubMed ID: 26688098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing.
    Yang X; Li K; Zhang X; Liu C; Guo B; Wen W; Gao X
    Lab Chip; 2018 Jan; 18(3):486-495. PubMed ID: 29309077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.