BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 30644496)

  • 1. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development.
    Shang M; Soon RH; Lim CT; Khoo BL; Han J
    Lab Chip; 2019 Jan; 19(3):369-386. PubMed ID: 30644496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models.
    Virumbrales-Muñoz M; Ayuso JM; Olave M; Monge R; de Miguel D; Martínez-Lostao L; Le Gac S; Doblare M; Ochoa I; Fernandez LJ
    Sci Rep; 2017 Sep; 7(1):11998. PubMed ID: 28931839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery.
    Agarwal P; Wang H; Sun M; Xu J; Zhao S; Liu Z; Gooch KJ; Zhao Y; Lu X; He X
    ACS Nano; 2017 Jul; 11(7):6691-6702. PubMed ID: 28614653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy.
    Pradhan S; Smith AM; Garson CJ; Hassani I; Seeto WJ; Pant K; Arnold RD; Prabhakarpandian B; Lipke EA
    Sci Rep; 2018 Feb; 8(1):3171. PubMed ID: 29453454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment.
    Bai J; Tu TY; Kim C; Thiery JP; Kamm RD
    Oncotarget; 2015 Nov; 6(34):36603-14. PubMed ID: 26474384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional culture models to study drug resistance in breast cancer.
    Fisher MF; Rao SS
    Biotechnol Bioeng; 2020 Jul; 117(7):2262-2278. PubMed ID: 32297971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput analysis of cell-cell crosstalk in ad hoc designed microfluidic chips for oncoimmunology applications.
    Mencattini A; De Ninno A; Mancini J; Businaro L; Martinelli E; Schiavoni G; Mattei F
    Methods Enzymol; 2020; 632():479-502. PubMed ID: 32000911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathophysiologically relevant in vitro tumor models for drug screening.
    Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M
    Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of tumor chip technology.
    Hachey SJ; Hughes CCW
    Lab Chip; 2018 Sep; 18(19):2893-2912. PubMed ID: 30156248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip.
    Lei KF; Wu MH; Hsu CW; Chen YD
    Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment.
    Niu Y; Bai J; Kamm RD; Wang Y; Wang C
    Mol Pharm; 2014 Jul; 11(7):2022-9. PubMed ID: 24533867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids.
    Shirure VS; Bi Y; Curtis MB; Lezia A; Goedegebuure MM; Goedegebuure SP; Aft R; Fields RC; George SC
    Lab Chip; 2018 Dec; 18(23):3687-3702. PubMed ID: 30393802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimicking Tumors: Toward More Predictive In Vitro Models for Peptide- and Protein-Conjugated Drugs.
    van den Brand D; Massuger LF; Brock R; Verdurmen WP
    Bioconjug Chem; 2017 Mar; 28(3):846-856. PubMed ID: 28122451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic-enabled self-organized tumor model for in vitro cytotoxicity assessment of doxorubicin.
    Yang Y; Liu S; Chen C; Huang H; Tao L; Qian Z; Li W
    Biomed Microdevices; 2020 Sep; 22(4):70. PubMed ID: 32960346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D modeling in cancer studies.
    Atat OE; Farzaneh Z; Pourhamzeh M; Taki F; Abi-Habib R; Vosough M; El-Sibai M
    Hum Cell; 2022 Jan; 35(1):23-36. PubMed ID: 34761350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing characteristics of cancer cells cultured on engineered platforms simulating different microenvironments.
    Jo Y; Choi N; Kim HN; Choi J
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):1170-1179. PubMed ID: 29519165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip.
    Han B; Qu C; Park K; Konieczny SF; Korc M
    Cancer Lett; 2016 Sep; 380(1):319-29. PubMed ID: 26688098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Biomimetic Models to Reconstitute Tumor Microenvironment In Vitro: Spheroids, Organoids, and Tumor-on-a-Chip.
    Li W; Zhou Z; Zhou X; Khoo BL; Gunawan R; Chin YR; Zhang L; Yi C; Guan X; Yang M
    Adv Healthc Mater; 2023 Jul; 12(18):e2202609. PubMed ID: 36917657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing.
    Yang X; Li K; Zhang X; Liu C; Guo B; Wen W; Gao X
    Lab Chip; 2018 Jan; 18(3):486-495. PubMed ID: 29309077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers.
    Amirghasemi F; Adjei-Sowah E; Pockaj BA; Nikkhah M
    Ann Biomed Eng; 2021 Aug; 49(8):1943-1972. PubMed ID: 33403451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.