These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 30644496)
21. Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers. Amirghasemi F; Adjei-Sowah E; Pockaj BA; Nikkhah M Ann Biomed Eng; 2021 Aug; 49(8):1943-1972. PubMed ID: 33403451 [TBL] [Abstract][Full Text] [Related]
22. Tumor Microenvironment Based on Extracellular Matrix Hydrogels for On-Chip Drug Screening. Liu X; Cheng J; Zhao Y Biosensors (Basel); 2024 Sep; 14(9):. PubMed ID: 39329804 [TBL] [Abstract][Full Text] [Related]
23. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808 [TBL] [Abstract][Full Text] [Related]
24. 3D Biomimetic Models to Reconstitute Tumor Microenvironment In Vitro: Spheroids, Organoids, and Tumor-on-a-Chip. Li W; Zhou Z; Zhou X; Khoo BL; Gunawan R; Chin YR; Zhang L; Yi C; Guan X; Yang M Adv Healthc Mater; 2023 Jul; 12(18):e2202609. PubMed ID: 36917657 [TBL] [Abstract][Full Text] [Related]
25. Establishment of Two Dimensional (2D) and Three-Dimensional (3D) Melanoma Primary Cultures as a Tool for In Vitro Drug Resistance Studies. Cruz Rodríguez N; Lineros J; Rodríguez CS; Martínez LM; Rodríguez JA Methods Mol Biol; 2019; 1913():119-131. PubMed ID: 30666602 [TBL] [Abstract][Full Text] [Related]
26. Generation of Heterogeneous Drug Gradients Across Cancer Populations on a Microfluidic Evolution Accelerator for Real-Time Observation. Lin KC; Torga G; Sun Y; Pienta KJ; Sturm JC; Austin RH J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609331 [TBL] [Abstract][Full Text] [Related]
27. On-chip anticancer drug screening - Recent progress in microfluidic platforms to address challenges in chemotherapy. Dhiman N; Kingshott P; Sumer H; Sharma CS; Rath SN Biosens Bioelectron; 2019 Jul; 137():236-254. PubMed ID: 31121461 [TBL] [Abstract][Full Text] [Related]
28. Vascularized microfluidic platforms to mimic the tumor microenvironment. Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072 [TBL] [Abstract][Full Text] [Related]
29. Selective Targeting of Tumor Cells in a Microfluidic Tumor Model with Multiple Cell Types. van de Crommert B; Palacio-Castañeda V; Verdurmen WPR Methods Mol Biol; 2024; 2804():237-251. PubMed ID: 38753152 [TBL] [Abstract][Full Text] [Related]
30. Three-gradient constructions in a flow-rate insensitive microfluidic system for drug screening towards personalized treatment. Shen S; Zhang X; Zhang F; Wang D; Long D; Niu Y Talanta; 2020 Feb; 208():120477. PubMed ID: 31816765 [TBL] [Abstract][Full Text] [Related]
31. Large-Scale Antitumor Screening Based on Heterotypic 3D Tumors Using an Integrated Microfluidic Platform. Liu W; Sun M; Han K; Wang J Anal Chem; 2019 Nov; 91(21):13601-13610. PubMed ID: 31525029 [TBL] [Abstract][Full Text] [Related]
32. Microfluidic device for expedited tumor growth towards drug evaluation. Uhl CG; Liu Y Lab Chip; 2019 Apr; 19(8):1458-1470. PubMed ID: 30888358 [TBL] [Abstract][Full Text] [Related]
33. 3D-3 Tumor Models in Drug Discovery for Analysis of Immune Cell Infiltration. Osswald A; Hedrich V; Sommergruber W Methods Mol Biol; 2019; 1953():151-162. PubMed ID: 30912021 [TBL] [Abstract][Full Text] [Related]
34. A layered cancer-on-a-chip system for anticancer drug screening and disease modeling. Flont M; Dybko A; Jastrzębska E Analyst; 2023 Oct; 148(21):5486-5495. PubMed ID: 37768020 [TBL] [Abstract][Full Text] [Related]
35. Bionic 3D spheroids biosensor chips for high-throughput and dynamic drug screening. Wu Q; Wei X; Pan Y; Zou Y; Hu N; Wang P Biomed Microdevices; 2018 Sep; 20(4):82. PubMed ID: 30220069 [TBL] [Abstract][Full Text] [Related]
36. Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Chen Y; Gao D; Liu H; Lin S; Jiang Y Anal Chim Acta; 2015 Oct; 898():85-92. PubMed ID: 26526913 [TBL] [Abstract][Full Text] [Related]
37. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018 [TBL] [Abstract][Full Text] [Related]
38. A versatile dilution-treatment-detection microfluidic chip platform for rapid In vitro lung cancer drug combination sensitivity evaluation. Zhang C; Tian K; Meng Z; Zhang J; Lu Y; Tan L; Zhang M; Xu D Talanta; 2024 Sep; 277():126298. PubMed ID: 38823330 [TBL] [Abstract][Full Text] [Related]
39. Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures. Mosaad E; Chambers K; Futrega K; Clements J; Doran MR BMC Cancer; 2018 May; 18(1):592. PubMed ID: 29793440 [TBL] [Abstract][Full Text] [Related]
40. Effect of suberoylanilide hydroxamic acid (SAHA) on breast cancer cells within a tumor-stroma microfluidic model. Peela N; Barrientos ES; Truong D; Mouneimne G; Nikkhah M Integr Biol (Camb); 2017 Dec; 9(12):988-999. PubMed ID: 29188843 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]