These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30644720)

  • 1. Copper Nanowire Dispersion through an Electrostatic Dispersion Mechanism for High-Performance Flexible Transparent Conducting Films and Optoelectronic Devices.
    Yin Z; Chen S; Guan Y; Ran Q; Zhang Q; Yan X; Jin R; Yu H; Li L; Yu J
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5264-5275. PubMed ID: 30644720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper Nanowire/Polydopamine-Modified Sodium Alginate Composite Films with Enhanced Long-Term Stability and Adhesion for Flexible Organic Light-Emitting Diodes.
    Zhao Y; Kang J; Huang W; Kong P; An D; He G
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37917355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale Stretchable Semiembedded Copper Nanowire Transparent Conductive Films by an Electrospinning Template.
    Yang X; Hu X; Wang Q; Xiong J; Yang H; Meng X; Tan L; Chen L; Chen Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26468-26475. PubMed ID: 28731322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes.
    Ahn Y; Jeong Y; Lee D; Lee Y
    ACS Nano; 2015 Mar; 9(3):3125-33. PubMed ID: 25712446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics.
    Im HG; Jung SH; Jin J; Lee D; Lee J; Lee D; Lee JY; Kim ID; Bae BS
    ACS Nano; 2014 Oct; 8(10):10973-9. PubMed ID: 25211125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a Reciprocal-Supporting Phenol-amine@CuNW Network for Antisedimentation Conductive Ink.
    Luo Z; Du P; Guo Z; Song M; Li B; Cai Z; Ge F
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27422-27433. PubMed ID: 37221852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.
    Chu HC; Chang YC; Lin Y; Chang SH; Chang WC; Li GA; Tuan HY
    ACS Appl Mater Interfaces; 2016 May; 8(20):13009-17. PubMed ID: 27144911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple, Fast, and Scalable Reverse-Offset Printing of Micropatterned Copper Nanowire Electrodes with Sub-10 μm Resolution.
    Kim J; Hwang I; Kim M; Jung H; Bae H; Lee Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5807-5814. PubMed ID: 35041372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronously improved reliability, figure of merit and adhesion of flexible copper nanowire networks by chitosan transition.
    Sun Y; Du C; Wu M; Zhao L; Yu S; Gong B; Ding Q
    Nanotechnology; 2020 Sep; 31(37):375303. PubMed ID: 32454475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices.
    Ding S; Jiu J; Gao Y; Tian Y; Araki T; Sugahara T; Nagao S; Nogi M; Koga H; Suganuma K; Uchida H
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6190-9. PubMed ID: 26830466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous Synthesis, Degradation, and Encapsulation of Copper Nanowires for Transparent Electrodes.
    Mock J; Bobinger M; Bogner C; Lugli P; Becherer M
    Nanomaterials (Basel); 2018 Sep; 8(10):. PubMed ID: 30274162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Synthesis of Ultralong and Thin Copper Nanowires and Its Application to High-Performance Flexible Transparent Conductive Electrodes.
    Wang Y; Liu P; Zeng B; Liu L; Yang J
    Nanoscale Res Lett; 2018 Mar; 13(1):78. PubMed ID: 29516262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens.
    Madaria AR; Kumar A; Zhou C
    Nanotechnology; 2011 Jun; 22(24):245201. PubMed ID: 21508460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV Treatment of Flexible Copper Nanowire Mesh Films for Transparent Conductor Applications.
    Lonne Q; Endrino J; Huang Z
    Nanoscale Res Lett; 2017 Oct; 12(1):577. PubMed ID: 29086156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors.
    Dou L; Cui F; Yu Y; Khanarian G; Eaton SW; Yang Q; Resasco J; Schildknecht C; Schierle-Arndt K; Yang P
    ACS Nano; 2016 Feb; 10(2):2600-6. PubMed ID: 26820809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifacial CdS/CdTe thin-film solar cells with copper nanowires as a transparent back contact.
    Byun E; Seo J; Kim D; Kim J
    Opt Express; 2018 Sep; 26(18):23594-23601. PubMed ID: 30184858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: a Review.
    Sannicolo T; Lagrange M; Cabos A; Celle C; Simonato JP; Bellet D
    Small; 2016 Nov; 12(44):6052-6075. PubMed ID: 27753213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel.
    Moon H; Won P; Lee J; Ko SH
    Nanotechnology; 2016 Jul; 27(29):295201. PubMed ID: 27276174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells.
    Zhao G; Wang W; Bae TS; Lee SG; Mun C; Lee S; Yu H; Lee GH; Song M; Yun J
    Nat Commun; 2015 Nov; 6():8830. PubMed ID: 26538008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Preparation of Nano-Copper Chalcogenide (Cu
    Wu E; Jin J; Liu S; Li D; Gao S; Deng F; Yan X; Xiong Y; Tang H
    Sci Rep; 2019 Aug; 9(1):12337. PubMed ID: 31451743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.