These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. The impact of chemical composition of halide surface ligands on the electronic structure and stability of lead sulfide quantum dot materials. Sloboda T; Svanström S; Johansson FOL; Bryngelsson E; García-Fernández A; Lindblad A; Cappel UB Phys Chem Chem Phys; 2022 May; 24(20):12645-12657. PubMed ID: 35579959 [TBL] [Abstract][Full Text] [Related]
25. Halide-, Hybrid-, and Perovskite-Functionalized Light Absorbing Quantum Materials of p-i-n Heterojunction Solar Cells. Beygi H; Sajjadi SA; Babakhani A; Young JF; van Veggel FCJM ACS Appl Mater Interfaces; 2018 Sep; 10(36):30283-30295. PubMed ID: 30107115 [TBL] [Abstract][Full Text] [Related]
26. Influence of Ligand Structure on Excited State Surface Chemistry of Lead Sulfide Quantum Dots. Kennehan ER; Munson KT; Grieco C; Doucette GS; Marshall AR; Beard MC; Asbury JB J Am Chem Soc; 2021 Sep; 143(34):13824-13834. PubMed ID: 34420309 [TBL] [Abstract][Full Text] [Related]
27. Enabling Ambipolar to Heavy n-Type Transport in PbS Quantum Dot Solids through Doping with Organic Molecules. Nugraha MI; Kumagai S; Watanabe S; Sytnyk M; Heiss W; Loi MA; Takeya J ACS Appl Mater Interfaces; 2017 May; 9(21):18039-18045. PubMed ID: 28472887 [TBL] [Abstract][Full Text] [Related]
28. Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films. Miller EM; Kroupa DM; Zhang J; Schulz P; Marshall AR; Kahn A; Lany S; Luther JM; Beard MC; Perkins CL; van de Lagemaat J ACS Nano; 2016 Mar; 10(3):3302-11. PubMed ID: 26895310 [TBL] [Abstract][Full Text] [Related]
29. Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells. Crisp RW; Kroupa DM; Marshall AR; Miller EM; Zhang J; Beard MC; Luther JM Sci Rep; 2015 Apr; 5():9945. PubMed ID: 25910183 [TBL] [Abstract][Full Text] [Related]
30. Engineering the Band Alignment in QD Heterojunction Films via Ligand Exchange. Grimaldi G; van den Brom MJ; du Fossé I; Crisp RW; Kirkwood N; Gudjonsdottir S; Geuchies JJ; Kinge S; Siebbeles LDA; Houtepen AJ J Phys Chem C Nanomater Interfaces; 2019 Dec; 123(49):29599-29608. PubMed ID: 31867087 [TBL] [Abstract][Full Text] [Related]
31. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications. Regulacio MD; Han MY Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703 [TBL] [Abstract][Full Text] [Related]
32. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study. Wang H; Wang Y; He B; Li W; Sulaman M; Xu J; Yang S; Tang Y; Zou B ACS Appl Mater Interfaces; 2016 Jul; 8(28):18526-33. PubMed ID: 27176547 [TBL] [Abstract][Full Text] [Related]
33. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C₆₁-butyric acid methyl ester interface. El-Ballouli AO; Alarousu E; Bernardi M; Aly SM; Lagrow AP; Bakr OM; Mohammed OF J Am Chem Soc; 2014 May; 136(19):6952-9. PubMed ID: 24521255 [TBL] [Abstract][Full Text] [Related]
34. One-Step Deposition of Photovoltaic Layers Using Iodide Terminated PbS Quantum Dots. Kim S; Noh J; Choi H; Ha H; Song JH; Shim HC; Jang J; Beard MC; Jeong S J Phys Chem Lett; 2014 Nov; 5(22):4002-7. PubMed ID: 26276485 [TBL] [Abstract][Full Text] [Related]
35. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363 [TBL] [Abstract][Full Text] [Related]
36. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots. Lai LH; Protesescu L; Kovalenko MV; Loi MA Phys Chem Chem Phys; 2014 Jan; 16(2):736-42. PubMed ID: 24270835 [TBL] [Abstract][Full Text] [Related]
37. Mechanism of visible light photocatalytic NO(x) oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres. Sun Y; Zhao Z; Dong F; Zhang W Phys Chem Chem Phys; 2015 Apr; 17(16):10383-90. PubMed ID: 25765222 [TBL] [Abstract][Full Text] [Related]
38. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells. Sun Z; Sitbon G; Pons T; Bakulin AA; Chen Z Sci Rep; 2015 May; 5():10626. PubMed ID: 26024021 [TBL] [Abstract][Full Text] [Related]
39. Enhancing the Performance of CdSe/CdS Dot-in-Rod Light-Emitting Diodes via Surface Ligand Modification. Rastogi P; Palazon F; Prato M; Di Stasio F; Krahne R ACS Appl Mater Interfaces; 2018 Feb; 10(6):5665-5672. PubMed ID: 29355299 [TBL] [Abstract][Full Text] [Related]
40. Bare Cd1-xZnxS ZB/WZ Heterophase Nanojunctions for Visible Light Photocatalytic Hydrogen Production with High Efficiency. Du H; Liang K; Yuan CZ; Guo HL; Zhou X; Jiang YF; Xu AW ACS Appl Mater Interfaces; 2016 Sep; 8(37):24550-8. PubMed ID: 27598838 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]