These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30645045)

  • 1. One-Step Labeling of Collagen Hydrogels with Polydopamine and Manganese Porphyrin for Non-Invasive Scaffold Tracking on Magnetic Resonance Imaging.
    Szulc DA; Cheng HM
    Macromol Biosci; 2019 Apr; 19(4):e1800330. PubMed ID: 30645045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells.
    Chen E; Yang L; Ye C; Zhang W; Ran J; Xue D; Wang Z; Pan Z; Hu Q
    Acta Biomater; 2018 Jun; 73():377-387. PubMed ID: 29678676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving osteogenesis of three-dimensional porous scaffold based on mineralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide.
    Zhou J; Guo X; Zheng Q; Wu Y; Cui F; Wu B
    Colloids Surf B Biointerfaces; 2017 Apr; 152():124-132. PubMed ID: 28103529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo MRI Tracking of Degradable Polyurethane Hydrogel Degradation In Situ Using a Manganese Porphyrin Contrast Agent.
    Tawagi E; Vollett KDW; Szulc DA; Santerre JP; Cheng HM
    J Magn Reson Imaging; 2023 Oct; 58(4):1139-1150. PubMed ID: 36877190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote Magnetic Orientation of 3D Collagen Hydrogels for Directed Neuronal Regeneration.
    Antman-Passig M; Shefi O
    Nano Lett; 2016 Apr; 16(4):2567-73. PubMed ID: 26943183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Bioprinted MR-Trackable Regenerative Scaffold for Postimplantation Monitoring on T1-Weighted MRI.
    Loai S; Szulc DA; Cheng HM
    J Magn Reson Imaging; 2022 Aug; 56(2):570-578. PubMed ID: 34994024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeling of Collagen Type I Templates with a Naturally Derived Contrast Agent for Noninvasive MR Imaging in Soft Tissue Engineering.
    Janke HP; Güvener N; Dou W; Tiemessen DM; YantiSetiasti A; Cremers JGO; Borm PJA; Feitz WFJ; Heerschap A; Kiessling F; Oosterwijk E
    Adv Healthc Mater; 2018 Sep; 7(18):e1800605. PubMed ID: 30058274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications.
    Chan EC; Kuo SM; Kong AM; Morrison WA; Dusting GJ; Mitchell GM; Lim SY; Liu GS
    PLoS One; 2016; 11(2):e0149799. PubMed ID: 26900837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-invasive in vitro and in vivo monitoring of degradation of fluorescently labeled hyaluronan hydrogels for tissue engineering applications.
    Zhang Y; Rossi F; Papa S; Violatto MB; Bigini P; Sorbona M; Redaelli F; Veglianese P; Hilborn J; Ossipov DA
    Acta Biomater; 2016 Jan; 30():188-198. PubMed ID: 26621694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering 3D-Bioplotted scaffolds to induce aligned extracellular matrix deposition for musculoskeletal soft tissue replacement.
    Warren PB; Huebner P; Spang JT; Shirwaiker RA; Fisher MB
    Connect Tissue Res; 2017; 58(3-4):342-354. PubMed ID: 28026970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering.
    Lalande C; Miraux S; Derkaoui SM; Mornet S; Bareille R; Fricain JC; Franconi JM; Le Visage C; Letourneur D; Amédée J; Bouzier-Sore AK
    Eur Cell Mater; 2011 Apr; 21():341-54. PubMed ID: 21484704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold.
    Hu Y; Dan W; Xiong S; Kang Y; Dhinakar A; Wu J; Gu Z
    Acta Biomater; 2017 Jan; 47():135-148. PubMed ID: 27744068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution 1.5-Tesla magnetic resonance imaging for tissue-engineered constructs: a noninvasive tool to assess three-dimensional scaffold architecture and cell seeding.
    Poirier-Quinot M; Frasca G; Wilhelm C; Luciani N; Ginefri JC; Darrasse L; Letourneur D; Le Visage C; Gazeau F
    Tissue Eng Part C Methods; 2010 Apr; 16(2):185-200. PubMed ID: 19438301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a High-Throughput Ultrasound Technique for the Analysis of Tissue Engineering Constructs.
    Stukel JM; Goss M; Zhou H; Zhou W; Willits RK; Exner AA
    Ann Biomed Eng; 2016 Mar; 44(3):793-802. PubMed ID: 26577255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds-relevance to tissue engineering.
    Terrovitis JV; Bulte JW; Sarvananthan S; Crowe LA; Sarathchandra P; Batten P; Sachlos E; Chester AH; Czernuszka JT; Firmin DN; Taylor PM; Yacoub MH
    Tissue Eng; 2006 Oct; 12(10):2765-75. PubMed ID: 17518646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of polydopamine nanoparticles knotted alginate scaffolds and their properties.
    Shen J; Shi D; Dong L; Zhang Z; Li X; Chen M
    J Biomed Mater Res A; 2018 Dec; 106(12):3255-3266. PubMed ID: 30242961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering.
    Ren K; He C; Xiao C; Li G; Chen X
    Biomaterials; 2015 May; 51():238-249. PubMed ID: 25771014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcontact printing of polydopamine on thermally expandable hydrogels for controlled cell adhesion and delivery of geometrically defined microtissues.
    Lee YB; Kim SJ; Kim EM; Byun H; Chang HK; Park J; Choi YS; Shin H
    Acta Biomater; 2017 Oct; 61():75-87. PubMed ID: 28760620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetronic(®)-based composite hydrogel scaffolds seeded with rat bladder smooth muscle cells for urinary bladder tissue engineering applications.
    Sivaraman S; Ostendorff R; Fleishman B; Nagatomi J
    J Biomater Sci Polym Ed; 2015; 26(3):196-210. PubMed ID: 25495917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.