These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 30645050)
1. Oxidative Epigallocatechin Gallate Coating on Polymeric Substrates for Bone Tissue Regeneration. Madhurakkat Perikamana SK; Lee SM; Lee J; Ahmad T; Lee MS; Yang HS; Shin H Macromol Biosci; 2019 Apr; 19(4):e1800392. PubMed ID: 30645050 [TBL] [Abstract][Full Text] [Related]
2. Surface engineering of titanium alloy using metal-polyphenol network coating with magnesium ions for improved osseointegration. Lee S; Chang YY; Lee J; Madhurakkat Perikamana SK; Kim EM; Jung YH; Yun JH; Shin H Biomater Sci; 2020 Jun; 8(12):3404-3417. PubMed ID: 32377652 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the anti-oxidative and ROS scavenging properties of biomaterials coated with epigallocatechin gallate for tissue engineering. Lee S; Lee J; Byun H; Kim SJ; Joo J; Park HH; Shin H Acta Biomater; 2021 Apr; 124():166-178. PubMed ID: 33561564 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins. Hong JM; Kim BJ; Shim JH; Kang KS; Kim KJ; Rhie JW; Cha HJ; Cho DW Acta Biomater; 2012 Jul; 8(7):2578-86. PubMed ID: 22480947 [TBL] [Abstract][Full Text] [Related]
6. Epigallocatechin Gallate-Modified Gelatin Sponges Treated by Vacuum Heating as a Novel Scaffold for Bone Tissue Engineering. Honda Y; Takeda Y; Li P; Huang A; Sasayama S; Hara E; Uemura N; Ueda M; Hashimoto M; Arita K; Matsumoto N; Hashimoto Y; Baba S; Tanaka T Molecules; 2018 Apr; 23(4):. PubMed ID: 29641458 [TBL] [Abstract][Full Text] [Related]
7. Nature-derived epigallocatechin gallate/duck's feet collagen/hydroxyapatite composite sponges for enhanced bone tissue regeneration. Kook YJ; Tian J; Jeon YS; Choi MJ; Song JE; Park CH; Reis RL; Khang G J Biomater Sci Polym Ed; 2018; 29(7-9):984-996. PubMed ID: 29207926 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of epigallocatechin-3-gallate (EGCG) modified collagen in guided bone regeneration (GBR) surgery and modulation of macrophage phenotype. Chu C; Wang Y; Wang Y; Yang R; Liu L; Rung S; Xiang L; Wu Y; Du S; Man Y; Qu Y Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():73-82. PubMed ID: 30889747 [TBL] [Abstract][Full Text] [Related]
9. Local Controlled Release of Polyphenol Conjugated with Gelatin Facilitates Bone Formation. Honda Y; Tanaka T; Tokuda T; Kashiwagi T; Kaida K; Hieda A; Umezaki Y; Hashimoto Y; Imai K; Matsumoto N; Baba S; Shimizutani K Int J Mol Sci; 2015 Jun; 16(6):14143-57. PubMed ID: 26110386 [TBL] [Abstract][Full Text] [Related]
10. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Ko E; Yang K; Shin J; Cho SW Biomacromolecules; 2013 Sep; 14(9):3202-13. PubMed ID: 23941596 [TBL] [Abstract][Full Text] [Related]
11. Effective immobilization of BMP-2 mediated by polydopamine coating on biodegradable nanofibers for enhanced in vivo bone formation. Cho HJ; Perikamana SK; Lee JH; Lee J; Lee KM; Shin CS; Shin H ACS Appl Mater Interfaces; 2014 Jul; 6(14):11225-35. PubMed ID: 24942379 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes. Chu C; Deng J; Man Y; Qu Y Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():258-264. PubMed ID: 28575983 [TBL] [Abstract][Full Text] [Related]
15. Electrospun biodegradable polyorganophosphazene fibrous matrix with poly(dopamine) coating for bone regeneration. Li Y; Shi Y; Duan S; Shan D; Wu Z; Cai Q; Yang X J Biomed Mater Res A; 2014 Nov; 102(11):3894-902. PubMed ID: 24339421 [TBL] [Abstract][Full Text] [Related]
16. Precoating of biphasic calcium phosphate bone substitute with atelocollagen enhances bone regeneration through stimulation of osteoclast activation and angiogenesis. Kim BS; Yang SS; Lee J J Biomed Mater Res A; 2017 May; 105(5):1446-1456. PubMed ID: 28177580 [TBL] [Abstract][Full Text] [Related]
17. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006 [TBL] [Abstract][Full Text] [Related]
18. (-)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-kappaB. Lin RW; Chen CH; Wang YH; Ho ML; Hung SH; Chen IS; Wang GJ Biochem Biophys Res Commun; 2009 Feb; 379(4):1033-7. PubMed ID: 19150340 [TBL] [Abstract][Full Text] [Related]
19. Osteogenic Effects of VEGF-Overexpressed Human Adipose-Derived Stem Cells with Whitlockite Reinforced Cryogel for Bone Regeneration. Kim I; Lee SS; Kim SHL; Bae S; Lee H; Hwang NS Macromol Biosci; 2019 May; 19(5):e1800460. PubMed ID: 30821921 [TBL] [Abstract][Full Text] [Related]
20. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]