These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30645123)

  • 1. Toward Ab Initio Protein Folding: Inherent Secondary Structure Propensity of Short Peptides from the Bioinformatics and Quantum-Chemical Perspective.
    Culka M; Galgonek J; Vymětal J; Vondrášek J; Rulíšek L
    J Phys Chem B; 2019 Feb; 123(6):1215-1227. PubMed ID: 30645123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Conformational Space of All 8000 Tripeptides by Quantum Chemical Methods: What Strain Is Affordable within Folded Protein Chains?
    Culka M; Kalvoda T; Gutten O; Rulíšek L
    J Phys Chem B; 2021 Jan; 125(1):58-69. PubMed ID: 33393778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What are the minimal folding seeds in proteins? Experimental and theoretical assessment of secondary structure propensities of small peptide fragments.
    Osifová Z; Kalvoda T; Galgonek J; Culka M; Vondrášek J; Bouř P; Bednárová L; Andrushchenko V; Dračínský M; Rulíšek L
    Chem Sci; 2024 Jan; 15(2):594-608. PubMed ID: 38179543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexibility of "polyunsaturated fatty acid chains" and peptide backbones: A comparative ab initio study.
    Law JM; Setiadi DH; Chass GA; Csizmadia IG; Viskolcz B
    J Phys Chem A; 2005 Jan; 109(3):520-33. PubMed ID: 16833374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between Conformational Strain and Intramolecular Interaction in Protein Structures: Which of Them Is Evolutionarily Conserved?
    Culka M; Rulíšek L
    J Phys Chem B; 2020 Apr; 124(16):3252-3260. PubMed ID: 32237747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying the helical conformations of aspereline peptides.
    Blanár E; Leitgeb B
    Chem Biol Drug Des; 2021 May; 97(5):1029-1037. PubMed ID: 33638250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The balance between side-chain and backbone-driven association in folding of the α-helical influenza A transmembrane peptide.
    Stylianakis I; Shalev A; Scheiner S; Sigalas MP; Arkin IT; Glykos N; Kolocouris A
    J Comput Chem; 2020 Sep; 41(25):2177-2188. PubMed ID: 32735736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exhaustive Mapping of the Conformational Space of Natural Dipeptides by the DFT-D3//COSMO-RS Method.
    Kalvoda T; Culka M; Rulíšek L; Andris E
    J Phys Chem B; 2022 Aug; 126(32):5949-5958. PubMed ID: 35930560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding propensities of peptide fragments of myoglobin.
    Reymond MT; Merutka G; Dyson HJ; Wright PE
    Protein Sci; 1997 Mar; 6(3):706-16. PubMed ID: 9070453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diproline templates as folding nuclei in designed peptides. Conformational analysis of synthetic peptide helices containing amino terminal Pro-Pro segments.
    Rai R; Aravinda S; Kanagarajadurai K; Raghothama S; Shamala N; Balaram P
    J Am Chem Soc; 2006 Jun; 128(24):7916-28. PubMed ID: 16771506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio folding of extended α-helix: a theoretical study about the role of electrostatic polarization in the folding of helical structures.
    Lazim R; Wei C; Sun T; Zhang D
    Proteins; 2013 Sep; 81(9):1610-20. PubMed ID: 23670702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure and a twisted beta-sheet conformation of the tripeptide L-leucyl-L-leucyl-L-leucine monohydrate trimethanol solvate: conformation analysis of tripeptides.
    Go K; Parthasarathy R
    Biopolymers; 1995 Nov; 36(5):607-14. PubMed ID: 7578952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. alpha- and 3(10)-helix interconversion: a quantum-chemical study on polyalanine systems in the gas phase and in aqueous solvent.
    Topol IA; Burt SK; Deretey E; Tang TH; Perczel A; Rashin A; Csizmadia IG
    J Am Chem Soc; 2001 Jun; 123(25):6054-60. PubMed ID: 11414838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of helix formation in small peptides of varying length in vacuo, in implicit solvent, and in explicit solvent.
    Wang X; Deng B; Sun Z
    J Mol Model; 2018 Dec; 25(1):3. PubMed ID: 30542771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of polyelectrolyte polypeptide structures using Monte Carlo conformational search methods with implicit solvation modeling.
    Evans JS; Chan SI; Goddard WA
    Protein Sci; 1995 Oct; 4(10):2019-31. PubMed ID: 8535238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reframing the Protein Folding Problem: Entropy as Organizer.
    Rose GD
    Biochemistry; 2021 Dec; 60(49):3753-3761. PubMed ID: 34855369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, stability and folding of the alpha-helix.
    Doig AJ; Andrew CD; Cochran DA; Hughes E; Penel S; Sun JK; Stapley BJ; Clarke DT; Jones GR
    Biochem Soc Symp; 2001; (68):95-110. PubMed ID: 11573350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental conformational energy maps of proteins and peptides.
    Balaji GA; Nagendra HG; Balaji VN; Rao SN
    Proteins; 2017 Jun; 85(6):979-1001. PubMed ID: 28168743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.