These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30645182)

  • 1. A Novel Optimization Framework to Improve the Computational Cost of Muscle Activation Prediction for a Neuromusculoskeletal System.
    Rahmati SMA; Rostami M; Karimi A
    Neural Comput; 2019 Mar; 31(3):574-595. PubMed ID: 30645182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of human gait trajectories during the SSP using a neuromusculoskeletal modeling: A challenge for parametric optimization.
    Rahmati SM; Rostami M; Beigzadeh B
    Technol Health Care; 2018; 26(6):889-907. PubMed ID: 29758956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A forward-muscular inverse-skeletal dynamics framework for human musculoskeletal simulations.
    S Shourijeh M; Smale KB; Potvin BM; Benoit DL
    J Biomech; 2016 Jun; 49(9):1718-1723. PubMed ID: 27106173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An EMG-based, muscle driven forward simulation of single support phase of gait.
    Jonkers I; Spaepen A; Papaioannou G; Stewart C
    J Biomech; 2002 May; 35(5):609-19. PubMed ID: 11955500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G; Kinney AL; Fregly BJ; Font-Llagunes JM
    J Biomech Eng; 2016 Aug; 138(8):0810011-08100111. PubMed ID: 27210105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ
    J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of muscle forces in gait using a simulation of the electromyographic activity and numerical optimization.
    Ravera EP; Crespo MJ; Braidot AA
    Comput Methods Biomech Biomed Engin; 2016; 19(1):1-12. PubMed ID: 25408069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilevel Optimization for Cost Function Determination in Dynamic Simulation of Human Gait.
    Nguyen VQ; Johnson RT; Sup FC; Umberger BR
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1426-1435. PubMed ID: 31199264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Static and dynamic optimization solutions for gait are practically equivalent.
    Anderson FC; Pandy MG
    J Biomech; 2001 Feb; 34(2):153-61. PubMed ID: 11165278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.
    Hussain S; Xie SQ; Jamwal PK
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of the pseudo-inverse method as a constrained static optimization for musculo-tendon forces prediction.
    Moissenet F; Chèze L; Dumas R
    J Biomech Eng; 2012 Jun; 134(6):064503. PubMed ID: 22757507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic review of approaches to modelling lower limb muscle forces during gait: Applicability to clinical gait analyses.
    Trinler U; Hollands K; Jones R; Baker R
    Gait Posture; 2018 Mar; 61():353-361. PubMed ID: 29433090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement.
    Seth A; Pandy MG
    J Biomech; 2007; 40(2):356-66. PubMed ID: 16513124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models.
    Valentin J; Sprenger M; Pflüger D; Röhrle O
    Int J Numer Method Biomed Eng; 2018 May; 34(5):e2965. PubMed ID: 29427559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A physiology-based inverse dynamic analysis of human gait using sequential convex programming: a comparative study.
    De Groote F; Demeulenaere B; Swevers J; De Schutter J; Jonkers I
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1093-102. PubMed ID: 21878002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of muscle activity using higher-order derivatives, static optimization, and forward-inverse dynamics.
    Yamasaki T; Idehara K; Xin X
    J Biomech; 2016 Jul; 49(10):2015-2022. PubMed ID: 27211782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem.
    De Groote F; Kinney AL; Rao AV; Fregly BJ
    Ann Biomed Eng; 2016 Oct; 44(10):2922-2936. PubMed ID: 27001399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait?
    Reinbolt JA; Haftka RT; Chmielewski TL; Fregly BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):782-93. PubMed ID: 17518274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.