These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30645182)

  • 21. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis.
    Leardini A; Belvedere C; Nardini F; Sancisi N; Conconi M; Parenti-Castelli V
    J Biomech; 2017 Sep; 62():77-86. PubMed ID: 28601242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of Constrained Musculoskeletal Systems in Task Space.
    Stanev D; Moustakas K
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):307-318. PubMed ID: 29053446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ; Fernandez JW; Akbarshahi M; Walter JP; Fregly BJ; Pandy MG
    J Orthop Res; 2009 Oct; 27(10):1326-31. PubMed ID: 19396858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle-driven forward dynamics simulation for the study of differences in muscle function during stair ascent and descent.
    Selk Ghafari A; Meghdari A; Vossoughi GR
    Proc Inst Mech Eng H; 2009 Oct; 223(7):863-74. PubMed ID: 19908425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Synergic analysis and dynamics pattern of human normal gait during swing phase].
    Yang Y; Wang R; Hao Z; Jin D; Zhang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):69-73. PubMed ID: 16532813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
    Thelen DG; Anderson FC
    J Biomech; 2006; 39(6):1107-15. PubMed ID: 16023125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review of Modelling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities during Strength Training.
    Schellenberg F; Oberhofer K; Taylor WR; Lorenzetti S
    Comput Math Methods Med; 2015; 2015():483921. PubMed ID: 26417378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of forces between synergistics and antagonistics muscles using an optimization criterion depending on muscle contraction behavior.
    Rengifo C; Aoustin Y; Plestan F; Chevallereau C
    J Biomech Eng; 2010 Apr; 132(4):041009. PubMed ID: 20387972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion.
    Selk Ghafari A; Meghdari A; Vossoughi G
    Proc Inst Mech Eng H; 2009 Aug; 223(6):663-75. PubMed ID: 19743633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic prediction of tongue muscle activations using a finite element model.
    Stavness I; Lloyd JE; Fels S
    J Biomech; 2012 Nov; 45(16):2841-8. PubMed ID: 23021611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stiffness modulation of redundant musculoskeletal systems.
    Stanev D; Moustakas K
    J Biomech; 2019 Mar; 85():101-107. PubMed ID: 30709554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 'cheap' optimal control approach to estimate muscle forces in musculoskeletal systems.
    Menegaldo LL; de Toledo Fleury A; Weber HI
    J Biomech; 2006; 39(10):1787-95. PubMed ID: 16033695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple controller for the prediction of three-dimensional gait.
    Fluit R; van der Krogt MM; van der Kooij H; Verdonschot N; Koopman HF
    J Biomech; 2012 Oct; 45(15):2610-7. PubMed ID: 22981439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer modeling and simulation of human movement.
    Pandy MG
    Annu Rev Biomed Eng; 2001; 3():245-73. PubMed ID: 11447064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Model-based estimation of muscle forces exerted during movements.
    Erdemir A; McLean S; Herzog W; van den Bogert AJ
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):131-54. PubMed ID: 17070969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the influence of muscle deactivation on other muscles and joints during gait motion.
    Komura T; Prokopow P; Nagano A
    J Biomech; 2004 Apr; 37(4):425-36. PubMed ID: 14996554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA; Perry J; Gitter AJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288-1).
    Nagano A; Umberger BR; Marzke MW; Gerritsen KG
    Am J Phys Anthropol; 2005 Jan; 126(1):2-13. PubMed ID: 15386246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of muscle response using three-dimensional musculoskeletal models before impact situation: a simulation study.
    Bae TS; Loan P; Choi K; Hong D; Mun MS
    J Biomech Eng; 2010 Dec; 132(12):121011. PubMed ID: 21142325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuromusculoskeletal model self-calibration for on-line sequential bayesian moment estimation.
    Bueno DR; Montano L
    J Neural Eng; 2017 Apr; 14(2):026011. PubMed ID: 28079030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.