BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30645251)

  • 1. Theoretical range precision obtained by maximum likelihood estimation in laser radar compared with the Cramer-Rao bound.
    Gu Z; Lai J; Wang C; Yan W; Ji Y; Li Z
    Appl Opt; 2018 Dec; 57(34):9951-9957. PubMed ID: 30645251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measures of performance in nonlinear estimation tasks: prediction of estimation performance at low signal-to-noise ratio.
    Müller SP; Abbey CK; Rybicki FJ; Moore SC; Kijewski MF
    Phys Med Biol; 2005 Aug; 50(16):3697-715. PubMed ID: 16077222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Range separation performance and optimal pulse-width prediction of a three-dimensional flash laser detection and ranging using the Cramer-Rao bound.
    McMahon J; Martin RK; Cain SC
    Appl Opt; 2011 Jun; 50(17):2559-71. PubMed ID: 21673757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Necessary conditions for a maximum likelihood estimate to become asymptotically unbiased and attain the Cramer-Rao lower bound. Part I. General approach with an application to time-delay and Doppler shift estimation.
    Naftali E; Makris NC
    J Acoust Soc Am; 2001 Oct; 110(4):1917-30. PubMed ID: 11681372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment.
    Shi C; Salous S; Wang F; Zhou J
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27929433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Barrage Jamming Strategy Based on CRB Maximization against Distributed MIMO Radar.
    Zheng G; Na S; Huang T; Wang L
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cramer-rao bounds and coherence performance analysis for next generation radar with pulse trains.
    Tang X; Tang J; He Q; Wan S; Tang B; Sun P; Zhang N
    Sensors (Basel); 2013 Apr; 13(4):5347-67. PubMed ID: 23612588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance Analysis for Joint Target Parameter Estimation in UMTS-Based Passive Multistatic Radar with Antenna Arrays Using Modified Cramér-Rao Lower Bounds.
    Shi C; Wang F; Salous S; Zhou J
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29057805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars.
    Huang J; Zhang Y; Luo S
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29244727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derivation of the Cramér-Rao Bound in the GNSS-Reflectometry Context for Static, Ground-Based Receivers in Scenarios with Coherent Reflection.
    Ribot MA; Botteron C; Farine PA
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27929388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision of attenuation coefficient measurements by optical coherence tomography.
    Neubrand LB; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2022 Aug; 27(8):. PubMed ID: 35945668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the validity domain of maximum likelihood estimators for depth-of-field extension in single-molecule localization microscopy.
    Lévêque O; Kulcsár C; Lee A; Bon P; Cognet L; Goudail F
    J Opt Soc Am A Opt Image Sci Vis; 2022 Jan; 39(1):37-43. PubMed ID: 35200975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cramér-Rao bounds on the performance of simulated annealing and genetic algorithms in EEG source localization.
    Escalona-Vargas DI; Gutiérrez D; Lopez-Arevalo I
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7115-8. PubMed ID: 22255978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-shifting interferometry and maximum-likelihood estimation theory.
    Rogala EW; Barrett HH
    Appl Opt; 1997 Dec; 36(34):8871-6. PubMed ID: 18264438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Millimeter-Waves in the Distance Measurement Accuracy of an FMCW Radar Sensor.
    Bhutani A; Marahrens S; Gehringer M; Göttel B; Pauli M; Zwick T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31547328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pose Estimation for Visible Light Systems Using a Quadrature Angular Diversity Aperture Receiver.
    Shen S; Menéndez Sánchez JM; Li S; Steendam H
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Analysis of the Direct Position Determination Method in the Presence of Array Model Errors.
    Wang D; Yu H; Wu Z; Wang C
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cramér-Rao bound-informed training of neural networks for quantitative MRI.
    Zhang X; Duchemin Q; Liu K; Gultekin C; Flassbeck S; Fernandez-Granda C; Assländer J
    Magn Reson Med; 2022 Jul; 88(1):436-448. PubMed ID: 35344614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-precision frequency estimator by using discrete Fourier transform and asymmetric discrete time Fourier transform samples.
    Wu H; Fan L; Song H; Jin J; Li P; Lan Z
    Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37232939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cramér-Rao bounds: an evaluation tool for quantitation.
    Cavassila S; Deval S; Huegen C; van Ormondt D; Graveron-Demilly D
    NMR Biomed; 2001 Jun; 14(4):278-83. PubMed ID: 11410946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.