These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30645377)

  • 1. Tunable surface plasmon-polaritons based on quantum coherence.
    Din RU; Zeng XD; Ge GQ; Zubairy MS
    Opt Express; 2019 Jan; 27(1):322-336. PubMed ID: 30645377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modes in plasmonic Bragg fibers with negative average permittivity.
    Deng H; Chen Y; Panoiu NC; Malomed BA; Ye F
    Opt Express; 2018 Feb; 26(3):2559-2568. PubMed ID: 29401794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological surface plasmons in superlattices with changing sign of the average permittivity.
    Deng H; Chen X; Panoiu NC; Ye F
    Opt Lett; 2016 Sep; 41(18):4281-4. PubMed ID: 27628377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-dielectric metamaterials.
    Jahani S; Jacob Z
    Nat Nanotechnol; 2016 Jan; 11(1):23-36. PubMed ID: 26740041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent amplification and inversion less lasing of surface plasmon polaritons in a negative index metamaterial with a resonant atomic medium.
    Asgarnezhad-Zorgabad S
    Sci Rep; 2021 Feb; 11(1):3450. PubMed ID: 33568734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic space folding: focusing surface plasmons via negative refraction in complementary media.
    Kadic M; Guenneau S; Enoch S; Ramakrishna SA
    ACS Nano; 2011 Sep; 5(9):6819-25. PubMed ID: 21744857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks.
    Fan RH; Qi DX; Hu Q; Qin L; Peng RW; Wang M
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1017-21. PubMed ID: 23646562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of surface plasmon polaritons at a chiral-metal interface.
    Mi G; Van V
    Opt Lett; 2014 Apr; 39(7):2028-31. PubMed ID: 24686666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmission/reflection behaviors of surface plasmons at an interface between two plasmonic systems.
    Guan F; Sun S; Ma S; Fang Z; Zhu B; Li X; He Q; Xiao S; Zhou L
    J Phys Condens Matter; 2018 Mar; 30(11):114002. PubMed ID: 29406312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable and enhanced Goos-Hänchen shift via surface plasmon resonance assisted by a coherent medium.
    Wan RG; Zubairy MS
    Opt Express; 2020 Mar; 28(5):6036-6047. PubMed ID: 32225861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kramers-Kronig Relation for Attenuated Total Reflection from a Metal-Dielectric Interface Where Surface Plasmon Polaritons Are Excited.
    Ju H
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical lateral forces and torques induced by chiral surface-plasmon-polaritons and their potential applications in recognition and separation of chiral enantiomers.
    Zhang Q; Li J; Liu X
    Phys Chem Chem Phys; 2019 Jan; 21(3):1308-1314. PubMed ID: 30574654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadly wavelength tunable bandpass filters based on long-range surface plasmon polaritons.
    Lee J; Lu F; Belkin MA
    Opt Lett; 2011 Oct; 36(19):3744-6. PubMed ID: 21964083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Routing of surface plasmons in silver nanowire networks controlled by polarization and coating.
    Wei H; Pan D; Xu H
    Nanoscale; 2015 Dec; 7(45):19053-9. PubMed ID: 26514593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon field enhancement in silver core-protruded silicon shell nanocylinder illuminated with light at 633 nm.
    Sung MJ; Ma YF; Chau YF; Huang DW
    Appl Opt; 2010 Nov; 49(32):6295-301. PubMed ID: 21068861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon resonance spectroscopy based on evanescent field treatment.
    Ekgasit S; Thammacharoen C; Knoll W
    Anal Chem; 2004 Feb; 76(3):561-8. PubMed ID: 14750847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-plasmon interferences.
    Dheur MC; Devaux E; Ebbesen TW; Baron A; Rodier JC; Hugonin JP; Lalanne P; Greffet JJ; Messin G; Marquier F
    Sci Adv; 2016 Mar; 2(3):e1501574. PubMed ID: 26998521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media.
    De Leon I; Berini P
    Opt Express; 2011 Oct; 19(21):20506-17. PubMed ID: 21997058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic bandgap in random media.
    Zhurikhina VV; Petrov MI; Shustova OV; Svirko YP; Lipovskii AA
    Nanoscale Res Lett; 2013 Jul; 8(1):324. PubMed ID: 23870782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral Plasmons with Twisted Atomic Bilayers.
    Lin X; Liu Z; Stauber T; Gómez-Santos G; Gao F; Chen H; Zhang B; Low T
    Phys Rev Lett; 2020 Aug; 125(7):077401. PubMed ID: 32857562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.