These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30645390)

  • 1. Fiber optic surface-plasmon-resonance-based highly sensitive arsenic sensor prepared using α-Fe
    Sharma S; Gupta BD
    Appl Opt; 2018 Dec; 57(36):10466-10473. PubMed ID: 30645390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the field distribution and fabrication of an Al@ZnO core-shell nanostructure for a SPR-based fiber optic phenyl hydrazine sensor.
    Tabassum R; Kaur P; Gupta BD
    Nanotechnology; 2016 May; 27(21):215501. PubMed ID: 27079452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthine oxidase functionalized Ta
    Kant R; Tabassum R; Gupta BD
    Biosens Bioelectron; 2018 Jan; 99():637-645. PubMed ID: 28841534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous tuning of electric field intensity and structural properties of ZnO: Graphene nanostructures for FOSPR based nicotine sensor.
    Tabassum R; Gupta BD
    Biosens Bioelectron; 2017 May; 91():762-769. PubMed ID: 28131978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers.
    Mishra SK; Gupta BD
    Analyst; 2013 May; 138(9):2640-6. PubMed ID: 23486702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localized surface plasmon resonance-based fiber-optic sensor for the detection of triacylglycerides using silver nanoparticles.
    Baliyan A; Usha SP; Gupta BD; Gupta R; Sharma EK
    J Biomed Opt; 2017 Oct; 22(10):1-10. PubMed ID: 29076305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.
    Tabassum R; Gupta BD
    Analyst; 2015 Mar; 140(6):1863-70. PubMed ID: 25635269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-imprinted nanoparticles for the concurrent estimation of Pb(II) and Cu(II) ions over a two channel surface plasmon resonance-based fiber optic platform.
    Shrivastav AM; Gupta BD
    J Biomed Opt; 2018 Jan; 23(1):1-8. PubMed ID: 29302955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive and selective erythromycin nanosensor employing fiber optic SPR/ERY imprinted nanostructure: Application in milk and honey.
    Shrivastav AM; Usha SP; Gupta BD
    Biosens Bioelectron; 2017 Apr; 90():516-524. PubMed ID: 27825873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous estimation of vitamin K1 and heparin with low limit of detection using cascaded channels fiber optic surface plasmon resonance.
    Tabassum R; Gupta BD
    Biosens Bioelectron; 2016 Dec; 86():48-55. PubMed ID: 27318569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing palladium supported zinc oxide multilayers and their nanocomposite.
    Tabassum R; Gupta BD
    Appl Opt; 2015 Feb; 54(5):1032-40. PubMed ID: 25968018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Enhancement Effects of Tiny SnO
    Xu L; Lin Z; Xiong X; Cheng H; Kang Z; Wang Y; Wu Z; Ma W; Yang N; He Y; Zou Z; Liu M; Li J; Kou X; Zhao Y
    Inorg Chem; 2023 Aug; 62(33):13649-13661. PubMed ID: 37599581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance based fiber optic trichloroacetic acid sensor utilizing layer of silver nanoparticles and chitosan doped hydrogel.
    Semwal V; Shrivastav AM; Gupta BD
    Nanotechnology; 2017 Feb; 28(6):065503. PubMed ID: 28059062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.
    Shrivastav AM; Usha SP; Gupta BD
    Biosens Bioelectron; 2016 May; 79():150-7. PubMed ID: 26706813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From a Relatively Hydrophobic and Triethylamine (TEA) Adsorption-Selective Core-Shell Heterostructure to a Humidity-Resistant and TEA Highly Selective Sensing Prototype: An Alternative Approach to Improve the Sensing Characteristics of TEA Sensors.
    Fu H; Shao H; Wang L; Jin H; Xia D; Deng S; Wang Y; Chen Y; Hua C; Liu L; Zang L
    ACS Sens; 2020 Feb; 5(2):571-579. PubMed ID: 32013398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-optic ammonia sensor using Ag/SnO(2) thin films: optimization of thickness of SnO(2) film using electric field distribution and reaction factor.
    Pathak A; Mishra SK; Gupta BD
    Appl Opt; 2015 Oct; 54(29):8712-21. PubMed ID: 26479808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu-ZnO thin films.
    Tabassum R; Mishra SK; Gupta BD
    Phys Chem Chem Phys; 2013 Jul; 15(28):11868-74. PubMed ID: 23764905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber optic surface plasmon resonance sensor based on a silver-coated large-core suspended-core fiber.
    Zhang X; Zhu XS; Shi YW
    Opt Lett; 2019 Sep; 44(18):4550-4553. PubMed ID: 31517928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS
    Usha SP; Gupta BD
    Biosens Bioelectron; 2018 Mar; 101():135-145. PubMed ID: 29055196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor.
    Srivastava SK; Gupta BD
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jul; 27(7):1743-9. PubMed ID: 20596163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.