These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 30645437)

  • 1. A nonlinear measurement method of polarization aberration in immersion projection optics by spectrum analysis of aerial image.
    Li E; Li Y; Sheng N; Li T; Sun Y; Wei P
    Opt Express; 2018 Dec; 26(25):32743-32756. PubMed ID: 30645437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vectorial pupil optimization to compensate polarization distortion in immersion lithography system.
    Li T; Liu Y; Sun Y; Yan X; Wei P; Li Y
    Opt Express; 2020 Feb; 28(4):4412-4425. PubMed ID: 32121678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rigorous imaging-based measurement method of polarization aberration in hyper-numerical aperture projection optics.
    Li E; Li Y; Liu Y; Liu K; Sun Y; Wei P
    Opt Express; 2021 Jun; 29(13):20872-20888. PubMed ID: 34266167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-objective lithographic source mask optimization to reduce the uneven impact of polarization aberration at full exposure field.
    Li T; Sun Y; Li E; Sheng N; Li Y; Wei P; Liu Y
    Opt Express; 2019 May; 27(11):15604-15616. PubMed ID: 31163755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jones pupil metrology of lithographic projection lens and its optimal configuration in the presence of error sources.
    Meng Z; Li S; Wang X; Bu Y; Wang J; Ni S; Yang C; Mao Y
    Opt Express; 2019 Feb; 27(4):4629-4647. PubMed ID: 30876077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberration analysis and compensate method of a BP neural network and sparrow search algorithm in deep ultraviolet lithography.
    Zhang S; Zhang L; Gai T; Xu P; Wei Y
    Appl Opt; 2022 Jul; 61(20):6023-6032. PubMed ID: 36255838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative method for in situ measurement of lens aberrations in lithographic tools using CTC-based quadratic aberration model.
    Liu S; Xu S; Wu X; Liu W
    Opt Express; 2012 Jun; 20(13):14272-83. PubMed ID: 22714489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberration measurement of projection optics in lithographic tools based on two-beam interference theory.
    Ma M; Wang X; Wang F
    Appl Opt; 2006 Nov; 45(32):8200-8. PubMed ID: 17068563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavefront aberration measurement method for a hyper-NA lithographic projection lens based on principal component analysis of an aerial image.
    Zhu B; Wang X; Li S; Yan G; Shen L; Duan L
    Appl Opt; 2016 Apr; 55(12):3192-8. PubMed ID: 27140087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ aberration measurement technique based on principal component analysis of aerial image.
    Duan L; Wang X; Bourov AY; Peng B; Bu P
    Opt Express; 2011 Sep; 19(19):18080-90. PubMed ID: 21935174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberration optimization in an extreme ultraviolet lithography projector via a BP neural network and simulated annealing algorithm.
    Zhao R; Dong L; Chen R; Wei Y
    Appl Opt; 2021 Feb; 60(5):1341-1348. PubMed ID: 33690577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of through-focus aerial image with aberration and imaginary mask edge effects in optical lithography simulation.
    Yamazoe K; Neureuther AR
    Appl Opt; 2011 Jul; 50(20):3570-8. PubMed ID: 21743568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask.
    Wang F; Wang X; Ma M; Zhang D; Shi W; Hu J
    Appl Opt; 2006 Jan; 45(2):281-7. PubMed ID: 16422158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple-field-point pupil wavefront optimization in computational lithography.
    Li T; Liu Y; Sun Y; Li E; Wei P; Li Y
    Appl Opt; 2019 Oct; 58(30):8331-8338. PubMed ID: 31674509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberration measurement technique based on an analytical linear model of a through-focus aerial image.
    Yan G; Wang X; Li S; Yang J; Xu D; Erdmann A
    Opt Express; 2014 Mar; 22(5):5623-34. PubMed ID: 24663903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerial image based technique for measurement of lens aberrations up to 37th Zernike coefficient in lithographic tools under partial coherent illumination.
    Liu W; Liu S; Zhou T; Wang L
    Opt Express; 2009 Oct; 17(21):19278-91. PubMed ID: 20372664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vectorial pupil optimization to compensate for a polarization effect at full exposure field in lithography.
    Yuan M; Sun Y; Wei P; Li Z; Liao G; Li Y; Zou L; Li Y
    Appl Opt; 2021 Nov; 60(31):9681-9690. PubMed ID: 34807151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Even aberration measurement of lithographic projection optics based on intensity difference of adjacent peaks in alternating phase-shifting mask image.
    Peng B; Wang X; Qiu Z; Cao Y; Duan L
    Appl Opt; 2010 May; 49(15):2753-60. PubMed ID: 20490235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical analysis of coma aberration measurement for aerial image sidelobe peaks.
    Suwa K; Yashiki S; Hirukawa S; Noda T
    Appl Opt; 2014 Apr; 53(11):2494-506. PubMed ID: 24787423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensation of EUV lithography mask blank defect based on an advanced genetic algorithm.
    Wu R; Dong L; Ma X; Wei Y
    Opt Express; 2021 Aug; 29(18):28872-28885. PubMed ID: 34615008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.